OpenCV - 图像形态学:腐蚀与膨胀

162 篇文章 ¥59.90 ¥99.00
本文介绍了图像形态学中的基本操作——腐蚀和膨胀,它们在图像分割、边缘检测和特征提取中有广泛应用。腐蚀操作通过结构元素消除小区域和噪声,而膨胀操作则用于填充空洞和连接对象。文中还提供了使用OpenCV进行腐蚀和膨胀操作的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OpenCV - 图像形态学:腐蚀与膨胀

图像形态学是数字图像处理中的一个重要领域,广泛应用于图像分割、边缘检测和特征提取等任务中。腐蚀(Erosion)和膨胀(Dilation)是图像形态学中最基本的操作之一,它们通过改变图像中像素的亮度和空间分布来改变图像的形状和结构。

腐蚀操作可以用于消除图像中的小区域、细小的物体或者噪声点,同时也可以用于分割图像中的连接对象。腐蚀操作基于结构元素(Structuring Element)和图像的卷积运算实现。结构元素是一个小的形状模板,定义了腐蚀操作的影响范围和方式。

下面是使用OpenCV库进行腐蚀操作的示例代码:

import cv2
import numpy as np

# 读取图像
image = cv2.imread('image.jpg'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值