图像分类实战:基于ResNet实现猫狗识别

🐶🐱 图像分类实战:基于 ResNet 实现猫狗识别(含完整 PyTorch 代码)

图像分类是计算机视觉中最基础也是最经典的任务之一。今天我们将带你实战体验如何使用 PyTorch 和 ResNet 构建一个猫狗识别系统。从数据预处理、模型构建、训练调优到模型保存和预测,每一步都细致讲解,带你快速上手!


🎯 一、任务目标

  • 使用 Kaggle 猫狗数据集进行图像分类;
  • 构建基于 ResNet18 的分类模型;
  • 实现完整训练与验证流程;
  • 进行单张图片预测;
  • 可视化训练结果与模型效果。

🗃️ 二、准备数据集(Kaggle 猫狗数据集)

你可以从 Kaggle 下载经典的猫狗数据集(Dogs vs. Cats):

链接:https://www.kaggle.com/c/dogs-vs-cats/dat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风亦辰739

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值