
从零开始掌握深度学习:理论 + 实战
文章平均质量分 79
本专栏旨在帮助零基础或初学者系统掌握深度学习的核心知识与实战技能,内容涵盖基础理论、PyTorch编程、主流模型实现、项目实战等多个方面。通过通俗易懂的讲解和丰富的代码示例,你将从神经网络的原理逐步过渡到图像分类、文本处理、时间序列预测等真实项目实战,最终具备独立完成AI项目的能力。本专栏适合高校学
风亦辰739
这个作者很懒,什么都没留下…
展开
-
深度学习+Flask 打包一个AI模型接口并部署上线
如何用 Flask 创建深度学习模型的在线接口;如何加载 PyTorch 模型并处理图片数据;如何通过 curl、requests、Postman 进行接口测试;简单部署方法(Gunicorn/Docker)介绍。原创 2025-05-21 14:59:57 · 155 阅读 · 0 评论 -
迁移学习实战:用预训练模型解决小样本图像分类
迁移学习(Transfer Learning)是将已有模型的知识迁移到新任务上的一种方法,特别适用于数据稀缺场景。使用ImageNet 预训练模型;替换最后的分类层;冻结或微调部分网络参数。适用于:医学图像识别、工业缺陷检测、花卉识别等“小数据量”图像任务。你学到了什么?用已有模型“提取知识”;如何使用 PyTorch 加载预训练模型;如何替换分类层,实现微调或特征提取;用于小样本图像分类任务的完整流程;冻结更多层或解冻全部微调;原创 2025-05-21 14:59:28 · 104 阅读 · 0 评论 -
时间序列预测实战:用 LSTM 预测股票价格
时间序列数据滑动窗口的构建方式;LSTM 网络在回归任务中的使用;使用 PyTorch 训练时间序列模型的完整流程;可视化真实 vs 预测值图表。股票预测一直是 AI 和金融交叉领域的热门方向。本项目虽然简单,却足以作为 LSTM 时间序列预测的入门实战模板。原创 2025-05-19 12:22:12 · 200 阅读 · 0 评论 -
文本分类实战:使用LSTM对微博评论进行情感分析
return out如何对中文文本数据进行清洗、编码、构建词典;如何使用 PyTorch 搭建 LSTM 文本分类模型;如何训练、验证、评估模型效果;如何对新评论进行情感预测。使用jieba分词替代字级分词;引入预训练词向量(如 fastText、Word2Vec);使用更强模型如 BiLSTM、TextCNN、Transformer;尝试多标签分类、多情感等级分类。情感分析是连接 NLP 与实际商业价值的黄金项目。希望本实战能够帮助你迈出 NLP 的第一步。原创 2025-05-19 12:21:10 · 176 阅读 · 0 评论 -
图像分类实战:基于ResNet实现猫狗识别
✅ 使用了预训练模型 ResNet18,大大加快训练;✅ 利用快速加载分类数据;✅ 实现了完整的训练、验证、预测流程;✅ 可扩展到其他多分类任务。用 ResNet50、EfficientNet 等更强模型;使用 TensorBoard 可视化训练过程;尝试模型量化、剪枝部署到边缘设备;图像分类是进入深度学习的绝佳练手项目。掌握从数据处理、模型训练到部署预测的完整流程,是每个深度学习工程师的必经之路。原创 2025-05-16 13:31:26 · 158 阅读 · 0 评论 -
用GPU训练模型的那些事:PyTorch 多卡训练实战
nn.ReLU(),nn.ReLU(),nn.ReLU(),✅ GPU 加速是深度学习训练的基础;✅是单机多卡的简便方式;✅ 建议使用替代以提升性能;✅ 多卡训练时注意设备管理和数据并行策略。原创 2025-05-16 13:31:03 · 46 阅读 · 0 评论 -
RNN/LSTM原理与 PyTorch 时间序列预测实战
传统的神经网络无法处理序列之间的依赖关系。而循环神经网络(RNN)引入“记忆”机制,可以将过去的信息保留下来用于当前输出的计算。项目内容模型结构单层 LSTM + FC输入维度优势可处理时序依赖,效果优于传统神经网络可改进多层 LSTM、双向 LSTM、GRU、注意力机制等。原创 2025-05-15 12:29:10 · 413 阅读 · 0 评论 -
CNN 卷积神经网络详解及 PyTorch 实现
CNN 是一种具有局部感受野和参数共享机制的深度神经网络,尤其适合处理二维图像。return x项目内容输入MNIST 手写数字图像(28×28)网络结构特点参数少、鲁棒性强、适合图像准确率通常比全连接网络更高。原创 2025-05-15 12:28:37 · 142 阅读 · 0 评论 -
用 PyTorch 实现你的第一个全连接神经网络(手写数字识别)
我们使用输入层(28×28 = 784维)隐藏层(128 个神经元,ReLU 激活)输出层(10 类别,对应数字 0~9)nn.ReLU(),模块内容数据集使用下载手写数字模型结构三层全连接神经网络(784→128→10)损失函数用于多分类优化器Adam优化器,加快收敛速度可视化使用matplotlib展示预测效果。原创 2025-05-14 13:19:43 · 226 阅读 · 0 评论 -
PyTorch 安装与基础操作:张量、自动求导详解
模块说明TensorPyTorch 的基本数据单元Autograd支持反向传播的自动求导机制开启参数学习(梯度追踪)backward()自动计算所有需要的偏导数no_grad禁用计算图,用于推理、评估等场景。原创 2025-05-14 13:19:19 · 123 阅读 · 0 评论 -
用 NumPy 手写一个最简单的神经网络
模块内容前向传播反向传播使用链式法则更新所有参数损失函数使用二分类交叉熵优化方式使用最基本的梯度下降法这就是一个最基本的、从零用 NumPy 实现的神经网络初始化、前向传播、损失计算、反向传播、参数更新。原创 2025-05-13 22:24:40 · 27 阅读 · 0 评论 -
激活函数、损失函数、反向传播你必须知道的事
激活函数的作用是引入非线性变换,让神经网络可以拟合复杂函数。如果没有激活函数,不管网络有多少层,本质上等价于一层线性变换。通过链式法则计算损失函数对每个权重的梯度,并使用梯度下降法进行权重更新。前向传播计算出预测值和损失;反向传播计算每层权重对损失的梯度;优化器更新参数,如 SGD、Adam 等。模块作用简述激活函数增加模型非线性能力,避免退化为线性变换损失函数衡量模型好坏,是优化目标反向传播利用链式法则自动计算梯度,是模型训练的核心机制。原创 2025-05-13 21:58:40 · 178 阅读 · 0 评论 -
神经网络是如何工作的
神经网络是一种模拟人脑神经元连接方式的算法结构。它由输入层、隐藏层和输出层构成,核心是:输入 → 权重计算 → 激活函数 → 输出步骤说明输入层接收特征数据隐藏层处理特征并提取模式激活函数引入非线性能力输出层给出预测结果(分类、回归等)损失函数衡量预测和真实值的误差反向传播通过链式法则优化参数。原创 2025-05-12 14:21:45 · 684 阅读 · 0 评论 -
深度学习与机器学习的区别?一文读懂核心概念!
机器学习是人工智能的一个分支,核心思想是让计算机从数据中学习规律,而不是依赖硬编码的规则。深度学习是机器学习的一个子领域,**基于人工神经网络(Artificial Neural Network)**模拟人脑的方式来处理数据。最早的神经网络只有1-2层,而深度学习是“多层神经网络”的泛称,常见有十几层甚至上百层,能够学习更复杂的模式和特征。机器学习是教会计算机“如何从数据中学”,而深度学习是让计算机“像人脑一样学”。如果你的问题可以用明确的规则或者少量数据建模,选择机器学习;原创 2025-05-12 14:18:27 · 108 阅读 · 0 评论