Julia on CPU

最近开始学习CUDA,感触良多。看书过程中发现Julia这个图形非常漂亮,照着书自己敲了一遍,发现其中运用了许多早已忘记的数学知识,于是赶紧恶补。

最终效果图:


/*
=========================编译环境=========================
系统: Win7 sp1 32位
CPU: AMD 黑盒5000+ oc到2.7GHz
内存: DDR2 800
显卡: ASUS GTX550Ti
环境: CUDA 5.5 + VisualStudio 2012 Ultimate update3
=========================================================
*/


以下为CPU执行的代码:

#include "common\cpu_bitmap.h"
#include "common\cpu_anim.h"

#define DIM 1000

struct cuComplex
{
	float r;
	float i;

	cuComplex(float a, float b) : r(a), i(b)
	{
	}

	// 复数乘法
	// z1 = (r + i) z2 = (a.r + a.i)
	// z1 * z2 = (r * a.r - i * a.i) + (r * a.i + i * a.r);
	cuComplex operator* (const cuComplex &a)
	{
		return cuComplex(r * a.r - i * a.i, i * a.r + r * a.i);
	}

	// 复数加法
	// z1 = (r + i) z2 = (a.r + a.i)
	// z1 + z2 = (r + a.r) + (i + a.i)
	cuComplex operator+ (const cuComplex &a)
	{
		return cuComplex(r + a.r, i + a.i);
	}

	// 复数的模
	// 模∣z∣=√(a^2+b^2) (1)∣z∣≧0 (2)复数模的平方等于这个复数与它的共轭复数的积。
	float magnitude2()
	{
		return r * r + i * i;
	}
};

int julia(int x, int y)
{
	const float scale = 1.5;
	float jx = scale * (float)(DIM / 2 - x) / (DIM / 2);
	float jy = scale * (float)(DIM / 2 - y) / (DIM / 2);

	cuComplex c(-0.8, 0.156);		// 复数
	cuComplex a(jx, jy);			// 实数

	int i = 0;
	for (int i = 0; i < 200; i++)
	{
		a = a * a + c;
		if (a.magnitude2() > 1000)
			return 0;
	}
	return 1;
}

void kernel(unsigned char *ptr)
{
	for (int y = 0; y < DIM; y++)
	{
		for (int x = 0; x < DIM; x++)
		{
			int offset = x + y * DIM;
			int juliaValue = julia(x, y);
			// 每个颜色用4个字节表示,并给每个字节赋值
			ptr[offset * 4 + 0] = 255 * juliaValue;			        // 确定图像的颜色的Red分量
			ptr[offset * 4 + 1] = 0;					// 确定图像的颜色的Green分量
			ptr[offset * 4 + 2] = 0;					// 确定图像的颜色的Blue分量
			ptr[offset * 4 + 3] = 255;
		}
	}
}

int main()
{
	CPUBitmap bitmap(DIM, DIM);
	unsigned char *ptr = bitmap.get_ptr();

	kernel(ptr);
	bitmap.display_and_exit();
}
注:需要在项目属性中指定lib文件夹

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值