51Nod 1103 N的倍数

一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数。
例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数。
Input
第1行:1个数N,N为数组的长度,同时也是要求的倍数。(2 <= N <= 50000)
第2 - N + 1行:数组A的元素。(0 < A[i] <= 10^9)
OutPut
如果没有符合条件的组合,输出No Solution。
第1行:1个数S表示你所选择的数的数量。
第2 - S + 1行:每行1个数,对应你所选择的数。
Input示例
8
2
5
6
3
18
7
11
19
Output示例
2
2
6
 
  
解题思路:鸽巢原理的应用,有关鸽巢原理的内容可以参照百度百科。在本题中假设前i项和的模n的余数为ai,加入前1-n的每个余数均不同,则总共0->n-1,则我们只需要找到模0的前i项即可。如果存在至少两项i,j,i<j, sum[i]%n=sum[j]%n,则i到j之间的所有数的和是n的倍数。因此对于本题肯定存在解,我们便按照这种思路去寻找即可。
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 50010;
int arr[maxn];
ll  sum[maxn];
int pos[maxn];
int n;

int main() {

    bool ok = false;
    cin >> n;
    memset(pos, -1, sizeof(pos));
    sum[0] = 0;
    for(int i = 1; i <= n; ++i) {
        scanf("%d", &arr[i]);
        if(ok) continue;
        sum[i] = (sum[i-1] + arr[i]) % n;
        if(sum[i] == 0) {
            ok = true;
            printf("%d\n", i);
            for(int j = 1; j <= i; ++j) {
                printf("%d\n", arr[j]);
            }
            continue;
        }
        if(pos[sum[i]] == -1) {
            pos[sum[i]] = i;
        } else {
            ok = true;
            printf("%d\n", i - pos[sum[i]]);
            for(int j = pos[sum[i]] + 1; j <= i; ++j) {
                printf("%d\n", arr[j]);
            }
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值