BZOJ 4006 管道连接(最小斯坦纳树+状压DP)

题目链接:BZOJ 4006

题目大意:n个点,其中p (p<=10) 个重要的点,m条无向边。p个重要点分成几类,求同类重要点互相联通的最小花费。

题解:说说我的理解,不一定对。

  • 只需要某些点联通,想到最小斯坦纳树;看到 p<=10,想到状压。

  • 令dp[i][status]表示i点为(某棵)最小斯坦纳树的根,status表示的点都依照题意同颜色建立起通道的最小花费,最终答案 max { dp[i][2^p-1] } (1<=i<=n) 。

  • 而status可以表示一棵最小斯坦纳树,即 spfa(status) 求dp[i][status](最小斯坦纳树);status也可以表示森林,由status的子集合并来(状压DP)。

(参考了某大佬的博客,不过比大佬写得差多了QwQ)
code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;
inline int read()
{
    char c=getchar(); int num=0,f=1;
    while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
    while (c<='9'&&c>='0') { num=num*10+c-'0'; c=getchar(); }
    return num*f;
}
struct edge{
    int to,ne,val; 
}e[100005];
int n,m,tot=0,head[1005],dp[1005][1055];
void push(int x,int y,int val)
{
    e[++tot].to=y; e[tot].val=val; e[tot].ne=head[x]; head[x]=tot;
    e[++tot].to=x; e[tot].val=val; e[tot].ne=head[y]; head[y]=tot;
}
int ans[1055],sum[15],tmp[15],K,S;
bool vis[1005];
struct point{
    int col,w;
}a[15];
bool check(int status)
{
    for (int i=1;i<=10;++i) tmp[i]=0;
    for (int i=1;i<=K;++i)
     if (status&(1<<(i-1))) tmp[a[i].col]++;
    for (int i=1;i<=10;++i)
     if (tmp[i]&&tmp[i]!=sum[i]) return false;
    return true;
}
void spfa(int status)          // 保证status状态下的最短路 
{
    queue<int> q;
    for (int i=1;i<=n;++i) vis[i]=true,q.push(i);
    while (!q.empty())
    {
        int now=q.front(); q.pop();
        vis[now]=false;
        for (int i=head[now];i;i=e[i].ne)
        {
            int v=e[i].to;
            if (dp[v][status]>dp[now][status]+e[i].val)
            {
                dp[v][status]=dp[now][status]+e[i].val;
                if (!vis[v]) vis[v]=true,q.push(v);
            }
        }   
    }
}
int main()
{
    n=read(); m=read(); K=read();
    for (int i=1;i<=m;++i)
    {
        int x=read(),y=read(),z=read();
        push(x,y,z);
    }
    S=1<<K;
    for (int i=1;i<=n;++i)
     for (int j=0;j<S;++j)
      dp[i][j]=inf;               
    for (int s=0;s<S;++s) ans[s]=inf;                // 初始化 inf 

    for (int i=1;i<=K;++i) 
     a[i].col=read(),a[i].w=read(),sum[a[i].col]++;
    for (int i=1;i<=K;++i)
     dp[a[i].w][1<<(i-1)]=0;                // 初始值 
    for (int s=0;s<S;++s)             // 所有状态 
    {
        for (int i=1;i<=n;++i)
         for (int s0=s;s0;s0=(s0-1)&s)
          dp[i][s]=min(dp[i][s],dp[i][s0]+dp[i][s^s0]);             // 从子集转移来 
        spfa(s);                       // 同状态下最短路 
    }
    for (int s=0;s<S;++s)               
     for (int i=1;i<=n;++i)
      ans[s]=min(ans[s],dp[i][s]);                 // 某状态下的最小值 
    for (int s=0;s<S;++s)           // 所有合法状态 
     if (check(s)) for (int s0=s;s0;s0=(s0-1)&s)       // 所有合法子集            
      if (check(s0)) ans[s]=min(ans[s],ans[s0]+ans[s^s0]);           // 拼出最小答案 
    printf("%d",ans[S-1]);
    return 0;
}
发布了39 篇原创文章 · 获赞 4 · 访问量 8115
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览