BZOJ 3197 assassin(树形DP+费用流)

版权声明:转载请标明出处,O(∩_∩)O谢谢~ https://blog.csdn.net/XHRlyb/article/details/79958761

题目链接:BZOJ 3197

题目大意:给出两棵节点被染成黑白两色的无根树,问第一棵树经过重标号后至少要反转多少个节点的颜色使之与第二棵树完全相同。

题解:类似BZOJ3162独钓寒江雪 的解法,可以将树的重心作为根DP,设f[i][j]表示若使第一棵树中以i为根的子树和第二棵树中以j为根的子树完全相同需要反转至少多少个节点的颜色。转移的时候对于同构的子树用费用流转移(还是比较好理解的,详见代码)。

code(第一次写费用流转移的DP,有参考大牛们的BLOG)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define N 705
#define seed 9875321
#define inf 1000000000
using namespace std;
inline int read()
{
    char c=getchar(); int num=0,f=1;
    while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
    while (c<='9'&&c>='0') { num=num*10+c-'0'; c=getchar(); }
    return num*f;
}
struct edge{
    int to,ne;
    bool del;
}e[N<<1];
int n,tot=1,head[N],root,fa[N],siz[N],f[N][N],tmp[N],a[N],b[N],deep[N],mn=inf,h[2];
inline void push(int x,int y) { e[++tot].to=y; e[tot].ne=head[x]; head[x]=tot; }
unsigned long long H[N];
pair<int,pair<unsigned long long,int> > w[N];
pair<unsigned long long,int> p1[N],p2[N];
struct Network{
    int S,T,tot,head[25],dis[25],pre[25]; bool vis[25];
    struct edge{
        int fr,to,ne,c,v;
    }e[450];
    void clear(int n) { S=0,T=n+1; tot=1; for (int i=S;i<=T;i++) head[i]=0; }
    void push(int x,int y,int flow,int cost)
    {
        e[++tot].fr=x; e[tot].to=y; e[tot].v=flow; e[tot].c=cost; e[tot].ne=head[x]; head[x]=tot;
        e[++tot].fr=y; e[tot].to=x; e[tot].v=0; e[tot].c=-cost; e[tot].ne=head[y]; head[y]=tot;
    }
    bool spfa()
    {
        for (int i=S;i<=T;i++) dis[i]=inf;
        queue<int> q; dis[S]=0; vis[S]=true; q.push(S);
        while (!q.empty())
        {
            int now=q.front(); q.pop();
            for (int i=head[now];i;i=e[i].ne)
            {
                int v=e[i].to;
                if (e[i].v&&dis[now]+e[i].c<dis[v])
                {
                    dis[v]=dis[now]+e[i].c;
                    pre[v]=i;
                    if (!vis[v]) vis[v]=true,q.push(v);
                }
            }
            vis[now]=false;
        }
        return dis[T]!=inf;
    }
    int mcf()
    {
        for (int i=T;i!=S;i=e[pre[i]].fr) e[pre[i]].v--,e[pre[i]^1].v++;
        return dis[T];
    }
}flow;
void getrt(int now,int pre)
{
    siz[now]=1; int tmp=0;
    for (int i=head[now];i;i=e[i].ne)
    {
        int v=e[i].to; if (v==pre) continue;
        getrt(v,now); siz[now]+=siz[v];
        tmp=max(tmp,siz[v]);
    }
    tmp=max(tmp,n-siz[now]);
    if (tmp<mn) mn=tmp,h[0]=now,h[1]=0;
     else if (tmp==mn) h[1]=now;
}
void geth(int now,int pre,int dep)
{
    fa[now]=pre; deep[now]=dep;
    for (int i=head[now];i;i=e[i].ne)
    {
        int v=e[i].to; if (v==pre||e[i].del) continue;
        geth(v,now,dep+1);
    }
    int top=0;
    for (int i=head[now];i;i=e[i].ne)
    {
        int v=e[i].to; if (v==pre||e[i].del) continue;
        tmp[++top]=H[v];
    }
    sort(tmp+1,tmp+top+1);
    H[now]=233;
    for (int i=1;i<=top;i++) (((H[now]*=seed)^=tmp[i])+=tmp[i])^=tmp[i];
}
void solve(int x,int y)
{
    int s1=0,s2=0;
    for (int i=head[x];i;i=e[i].ne)
    {
        int v=e[i].to; if (v==fa[x]||e[i].del) continue;
        p1[++s1]=make_pair(H[v],v);
    }
    for (int i=head[y];i;i=e[i].ne)
    {
        int v=e[i].to; if (v==fa[y]||e[i].del) continue;
        p2[++s2]=make_pair(H[v],v);
    }
    sort(p1+1,p1+s1+1); sort(p2+1,p2+s2+1);
    for (int i=1;i<=s1;i++)
    {
        int j=i;
        while (j<s1&&p1[j+1].first==p1[j].first) j++;
        int len=j-i+1;
        flow.clear(len*2);
        for (int k=i;k<=j;k++)
         for (int l=i;l<=j;l++)
          flow.push(k-i+1,l-i+1+len,1,f[p1[k].second][p2[l].second]);
        for (int k=1;k<=len;k++)
         flow.push(flow.S,k,1,0),flow.push(k+len,flow.T,1,0);
        while (flow.spfa()) f[x][y]+=flow.mcf();
        i=j;
    }
    if (a[x]!=b[y]) f[x][y]++;
}
int main()
{
    n=read();
    for (int i=1;i<n;i++)
    {
        int x=read(),y=read();
        push(x,y); push(y,x);
    }
    for (int i=1;i<=n;i++) a[i]=read();
    for (int i=1;i<=n;i++) b[i]=read();
    getrt(1,0);
    if (h[1])
    {
        for (int i=head[h[0]];i;i=e[i].ne)
         if (e[i].to==h[1]) e[i].to=e[i^1].to=root=n+1;
        push(n+1,h[0]); push(n+1,h[1]); n++;
    }
    else root=h[0];
    geth(root,0,1);
    for (int i=1;i<=n;i++) w[i]=make_pair(-deep[i],make_pair(H[i],i));
    sort(w+1,w+n+1);
    for (int i=1;i<=n;i++)
    {
        int j=i;
        while (j<n&&w[j+1].first==w[j].first&&w[j+1].second.first==w[j].second.first) j++;
        for (int k=i;k<=j;k++)
         for (int l=i;l<=j;l++)
          solve(w[k].second.second,w[l].second.second);
        i=j;
    }
    printf("%d",f[root][root]);
    return 0;
}
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页