在二叉搜索树的插入和删除操作都必须先查找,查找的效率代表了二叉搜索树中各个操作的性能
这种情况是最优的情况下,并不代表二叉搜索树的时间复杂度
在构建二叉搜索树时,如果插入元素有序或接近有序,如 1 2 3 4 5 6,二叉搜索树退化成为一颗单支树,此时查找的时间复杂度为O(N)
所以为了提高二叉搜索树操作的效率,在构建二叉搜索树时尽量避免出现单支树的情况出现
通过一些机制是可以避免在构建二叉树时出现单支树的情况------平衡二叉搜索树
AVL树 和 红黑树
在二叉搜索树的插入和删除操作都必须先查找,查找的效率代表了二叉搜索树中各个操作的性能
这种情况是最优的情况下,并不代表二叉搜索树的时间复杂度
在构建二叉搜索树时,如果插入元素有序或接近有序,如 1 2 3 4 5 6,二叉搜索树退化成为一颗单支树,此时查找的时间复杂度为O(N)
所以为了提高二叉搜索树操作的效率,在构建二叉搜索树时尽量避免出现单支树的情况出现
通过一些机制是可以避免在构建二叉树时出现单支树的情况------平衡二叉搜索树
AVL树 和 红黑树