一、题目
题目描述 Description
小雪和小可可被困在了一个无限大的迷宫中。
已经知道这个迷宫有 N 堵环状的墙,如果把整个迷宫看作是一个二维平面,那么每一堵墙都是平面上一个圆。任意两个圆不相交,不重合,也不会相切, 但有可能相互包含。小雪和小可可分别被困在了 2 个不同的位置,且保证他们的位置与这些圆不重合。
他们只有破坏墙面才能穿过去。
小雪希望知道,如果他们要相见,至少要破坏掉多少堵墙?他们可以在任何位置相见。
输入描述 Input Description
第一行有一个整数 N,表示有多少堵墙,
保证 0<=N<=8000。
之后 N 行,每一行有三个整数 x, y 和 r,表示有一堵环状的墙是以(x,y)为圆形, r为半径的。
保证 -100000000<=x,y,r<=100000000。
再下一行有一个整数 Q,表示有多少组询问,
保证 1<=Q<=8000。
之后 Q 行,每一行有 4 个整数 a,b,c 和 d,中间用空格隔开
给出了一组询问,表示小雪所在的位置为(a,b),小可可所在的位置为(c,d)。
保证-100000000<=a,b,c,d<=100000000。
输出描述 Output Description
输出 Q 行,对应 Q 次询问,每一行输出一个整数,表示最小需要破坏掉多少堵墙才能相见。
样例输入 Sample Input
【样例输入1】: 3 0 0 1 3 0 1 2 0 4 1 0 0 3 0 【样例输入2】: 3 0 0 1 0 0 2 4 0 1 2 0 0 4 0 0 0 0 4
样例输出 Sample Output
【样例输出1】: 2 【样例输出2】: 3 2
数据范围及提示 Data Size & Hint
对于 20%的数据, 0<=N<=200。
对于 40%的数据, 0<=N<=1000。
对于 100%的数据, 0<=N<=8000, 0<=Q<=8000。
此外,还有额外的 20%的数据,满足 0<=N<=1000, 0<=Q<=1000。
所有数绝对值不超过 100000000。
大数据点时限3s。
二、思路
可以将圆分成3类:
1、2个点都在圆中
2、2个点都不在圆中
3、1个点在圆中,1个点不在圆中
如果2个点都在圆中或者都不在圆中,则这个圆不需要被破坏;否则需要破坏,结果(answer)加1
三、完整代码
#include <bits/stdc++.h>
using namespace std;
const int N=8005;
int n,q,ans;
long long x[N],y[N],r[N],a,b,c,d;
bool check(int i){ //2个点分别的坐标是否符合条件
bool f1=(x[i]-a)*(x[i]-a)+(y[i]-b)*(y[i]-b)<=r[i]*r[i];
bool f2=(x[i]-c)*(x[i]-c)+(y[i]-d)*(y[i]-d)<=r[i]*r[i];
return f1&&!f2 || !f1&&f2; //返回 是否其中一个在圆中,一个在圆外 的真假结果
}
int main(){
cin>>n;
for(int i=1;i<=n;i++) cin>>x[i]>>y[i]>>r[i];
cin>>q;
while(q--){
ans=0;
cin>>a>>b>>c>>d;
for(int i=1;i<=n;i++) if(check(i)) ans++; //如果返回值为真,则要破坏一堵墙
cout<<ans<<endl;
}
return 0;
}
请各位大神提出意见