题目描述
给定一个整数数组 A,对于每个整数 A[i],我们可以选择 x = -K 或是 x = K,并将 x 加到 A[i] 中。
在此过程之后,我们得到一些数组 B。
返回 B 的最大值和 B 的最小值之间可能存在的最小差值。
示例 1:
输入:A =[7,8,8,5,2], K = 4
输出:5
示例 2:
输入:A = [4,8,2,7,2], K = 5
输出:6
总结
先实现,再优化,但还是不要忘了《黑客与画家》说的那样,写代码要像写诗,不是写的像诗,而是要像写诗一样去写代码。
思路就是抽象的模型,把每个数变成(i-k,i+k)这样的数组
Sample & Demo Code
class Solution {
public int smallestRangeII(int[] A, int K) {
Arrays.sort(A);
int len = A.length;
int res = A[len-1] - A[0];
for(int i = 1; i < len; i++) {
int left = Math.min(A[0]+K, A[i]-K);
int right = Math.max(A[len-1]-K, A[i-1]+K);
//一开始不理解,就是每注意到这行
res = Math.min(right-left, res);
}
return res;
}
}
ERROR Code
class Solution {
public int smallestRangeII(int[] A, int K) {
if(A.length < 2) return 0;
Arrays.sort(A);
if(A[A.length-1] - A[0] <= K || K == 0)
return A[A.length-1] - A[0];
int left, right;
if(A[0] + K < A[A.length-1] - K){
left = A[0] + K;
right = A[A.length-1] - K;
}else {
right = A[0] + K;
left = A[A.length-1] - K;
}
int res = A[A.length-1] - A[0];
for(int i : A) {
int tl = i-K, tr = i+K;
if(tl < left && tr > right) {
if(left - tl > tr - right) right = tr;
else left = tl;
}
}
return Math.min(right-left, res);
}
}
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/smallest-range-ii