LeetCode最小差值 I

这篇博客探讨了LeetCode中的一个经典问题——找到数组A在允许区间[-K, K]内调整每个元素后的最小差值。通过举例说明,如A = [1]和K = 0时差值为0,A = [0, 10]和K = 2时差值为6。博主分享了如何优化解决方案,实现了速度翻倍的效果。" 100938474,7854605,AdminLTE2详解与SSM整合实践,"['前端开发', 'AdminLTE', 'HTML', 'CSS', 'jQuery']
摘要由CSDN通过智能技术生成

给你一个整数数组 A,对于每个整数 A[i],我们可以选择处于区间 [-K, K] 中的任意数 x ,将 x 与 A[i] 相加,结果存入 A[i] 。

在此过程之后,我们得到一些数组 B。

返回 B 的最大值和 B 的最小值之间可能存在的最小差值。

示例 1:

输入:A = [1], K = 0
输出:0
解释:B = [1]
示例 2:

输入:A = [0,10], K = 2
输出:6
解释:B = [2,8]
示例 3:

输入:A = [1,3,6], K = 3
输出:0
解释:B = [3,3,3] 或 B = [4,4,4]

class Solution {
public:
    int smallestRangeI(vector<int>& A, int K) {
        int min = A[0];
        int max = A[0];
        for(int i = 1; i < A.size(); i++) {
            if(min > A[i])
                min = A[i];
            if(max < A[i])
                max = A[i];
        }
        //int result = (max - K) - (min + K);
        int result = max - min - 2 * K;
        if(result < 0)
            return 0;
        return result;
    }
};

参照大牛写法,速度提升了一倍

static int n=[](){std::ios::sync_with_stdio(false);std::cin.tie(nullptr);return 0;}();

class Solution {
public:
    int smallestRangeI(vector<int>& A, int K) {
        int minVal = 10000;
        int maxVal = 0;
        for(int a : A) {
            if(minVal > a)
                minVal = a;
            if(maxVal < a)
                maxVal = a;
        }
        //int result = (max - K) - (min + K);
        return max(0, maxVal - minVal - K * 2);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值