LeetCode刷题笔记 413. 等差数列划分

题目描述

如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列。

例如,以下数列为等差数列:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9

以下数列不是等差数列。

1, 1, 2, 5, 7

数组 A 包含 N 个数,且索引从0开始。数组 A 的一个子数组划分为数组 (P, Q),P 与 Q 是整数且满足 0<=P<Q<N 。

如果满足以下条件,则称子数组(P, Q)为等差数组:

元素 A[P], A[p + 1], …, A[Q - 1], A[Q] 是等差的。并且 P + 1 < Q 。

函数要返回数组 A 中所有为等差数组的子数组个数。

示例:
A = [1, 2, 3, 4]

返回: 3, A 中有三个子等差数组: [1, 2, 3], [2, 3, 4] 以及自身 [1, 2, 3, 4]。

递归

class Solution {
    int sum = 0;
    public int numberOfArithmeticSlices(int[] A) {
        helper(A.length-1, A);
        return sum;
    }
    
    private int helper(int i, int[] A) {
        if(i < 2) return 0;
        
        int temp = 0;
        if(A[i] - A[i-1] == A[i-1] - A[i-2]) {
            temp = 1 + helper(i-1, A);
            sum += temp;
            return temp;
        } else return helper(i-1, A);
    }
}

DP

public class Solution {
    public int numberOfArithmeticSlices(int[] A) {
        int[] dp = new int[A.length];
        int sum = 0;
        for (int i = 2; i < dp.length; i++) {
            if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
                dp[i] = 1 + dp[i - 1];
                sum += dp[i];
            }
        }
        return sum;
    }
}

优化

public class Solution {
    public int numberOfArithmeticSlices(int[] A) {
        int dp = 0;
        int sum = 0;
        for (int i = 2; i < A.length; i++) {
            if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
                dp = 1 + dp;
                sum += dp;
            } else dp = 0;
        }
        return sum;
    }
}

作者:LeetCode
链接:https://leetcode-cn.com/problems/arithmetic-slices/solution/deng-chai-shu-lie-hua-fen-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值