分治策略

最大子数组

#include<iostream>
#include<climits>
using namespace std;

int getMiddle(int a[], int low, int mid, int high);
int maxSubset(int a[], int low, int high);
int main()
{
	int a[] = { 13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7 };
	cout << "the maxsubset:" << maxSubset(a, 0, 15) << endl;
	system("pause");
}
int getMiddle(int a[], int low, int mid, int high)
{
	int left_max = INT_MIN;
	int right_max = INT_MIN;
	int sum = 0;
	for (int i = mid; i >= low; i--)//计算左边的最大和
	{
		sum += a[i];
		if (sum > left_max) left_max = sum;
	}
	sum = 0;
	for (int i = mid + 1; i <= high; i++)//计算右边的最大和
	{
		sum += a[i];
		if (sum > right_max) right_max = sum;
	}
	return right_max + left_max;
}

int maxSubset(int a[], int low,int high)
{
	if (low == high)
		return a[low];
	else
	{
		int mid = (low + high) / 2;
		int left = maxSubset(a, 0, mid);//最大和在左边,递归调用
		int right = maxSubset(a, mid + 1, high);//最大和在右边,递归调用
		int middle = getMiddle(a, low,mid, high);//最大和在中间
		if (middle > left&&middle > right) return middle;
		else if (left > middle&&left > right) return left;
		else return right;
	}
}

Strassen方法矩阵乘法

对于矩阵乘法 C = A × B,通常的做法是将矩阵进行分块相乘,如下图所示:


从上图可以看出这种分块相乘总共用了8次乘法,当然对于子矩阵相乘(如A0×B0),还可以继续递归使用分块相乘。对于中小矩阵来说,很适合使用这种分块乘法,但是对于大矩阵来说,递归的次数较多,如果能减少每次分块乘法的次数,那么性能将可以得到很好的提高。

Strassen矩阵乘法就是采用了一个简单的运算技巧,将上面的8次矩阵相乘变成了7次乘法,看别小看这减少的1次乘法,因为每递归1次,性能就提高了1/8,比如对于1024*1024的矩阵,第1次先分解成7次512*512的矩阵相乘,对于512*512的矩阵,又可以继续递归分解成256*256的矩阵相乘,…,一直递归下去,假设分解到64*64的矩阵大小后就不再递归,那么所花的时间将是分块矩阵乘法的(7/8) * (7/8) * (7/8) * (7/8) = 0.586倍,提高了快接近一倍。当然这是理论上的值,因为实际上strassen乘法增加了其他运算开销,实际性能会略低一点。

由上可见,Strassen矩阵乘法是通过递归实现的,它将一般情况下二阶矩阵乘法(可扩展到n阶,但Strassen矩阵乘法要求n是2的幂)所需的8次乘法降低为7次,其C++实现代码如下:

下面就是Strassen矩阵乘法的实现方法,

    M1 = (A0 + A3) × (B0 + B3)

   M2 = (A2 + A3) × B0

    M3 = A0 × (B1 - B3)

    M4 = A3 × (B2 - B0)

    M5 = (A0 + A1) × B3

    M6 = (A2 - A0) × (B0 + B1)

    M7 = (A1 - A3) × (B2 + B3)

    C0 = M1 + M4 - M5 + M7

    C1 = M3 + M5

    C2 = M2 + M4

    C3 = M1 - M2 + M3 + M6

在求解M1,M2,M3,M4,M5,M6,M7时需要使用7次矩阵乘法,其他都是矩阵加法和减法。

下面看看Strassen矩阵乘法的串行实现伪代码:

Serial_StrassenMultiply(A, B, C)

{

    T1 = A0 + A3;

    T2 = B0 + B3;

    StrassenMultiply(T1, T2, M1);

    T1 = A2 + A3;

    StrassenMultiply(T1, B0, M2);

    T1 = (B1 - B3);

    StrassenMultiply(A0, T1, M3);

 

    T1 = B2 - B0;

    StrassenMultiply(A3, T1, M4);

 

   T1 = A0 + A1;

   StrassenMultiply(T1, B3, M5);       

   

    T1 = A2 – A0;

    T2 = B0 + B1;

    StrassenMultiply(T1, T2, M6);

    T1 = A1 – A3;

    T2 = B2 + B3;

    StrassenMultiply(T1, T2, M7);

    C0 = M1 + M4 - M5 + M7

    C1 = M3 + M5

    C2 = M2 + M4

    C3 = M1 - M2 + M3 + M6

}

#include <iostream>  

using namespace std;

const int N = 6;     //Define the size of the Matrix  

template<typename T>
void Strassen(int n, T A[][N], T B[][N], T C[][N]);

template<typename T>
void input(int n, T p[][N]);

template<typename T>
void output(int n, T C[][N]);

int main() {
	//Define three Matrices  
	int A[N][N], B[N][N], C[N][N];

	//对A和B矩阵赋值,随便赋值都可以,测试用  
	for (int i = 0; i<N; i++) {
		for (int j = 0; j<N; j++) {
			A[i][j] = i * j;
			B[i][j] = i * j;
		}
	}

	//调用Strassen方法实现C=A*B  
	Strassen(N, A, B, C);

	//输出矩阵C中值  
	output(N, C);

	system("pause");
	return 0;
}


template<typename T>
void input(int n, T p[][N]) {
	for (int i = 0; i<n; i++) {
		cout << "Please Input Line " << i + 1 << endl;
		for (int j = 0; j<n; j++) {
			cin >> p[i][j];
		}
	}
}


template<typename T>
void output(int n, T C[][N]) {
	cout << "The Output Matrix is :" << endl;
	for (int i = 0; i<n; i++) {
		for (int j = 0; j<n; j++) {
			cout << C[i][j] << "" << endl;
		}
	}
}


template<typename T>
void Matrix_Multiply(T A[][N], T B[][N], T C[][N]) {  //Calculating A*B->C  
	for (int i = 0; i<2; i++) {
		for (int j = 0; j<2; j++) {
			C[i][j] = 0;
			for (int t = 0; t<2; t++) {
				C[i][j] = C[i][j] + A[i][t] * B[t][j];
			}
		}
	}
}


template <typename T>
void Matrix_Add(int n, T X[][N], T Y[][N], T Z[][N]) {
	for (int i = 0; i<n; i++) {
		for (int j = 0; j<n; j++) {
			Z[i][j] = X[i][j] + Y[i][j];
		}
	}
}


template <typename T>
void Matrix_Sub(int n, T X[][N], T Y[][N], T Z[][N]) {
	for (int i = 0; i<n; i++) {
		for (int j = 0; j<n; j++) {
			Z[i][j] = X[i][j] - Y[i][j];
		}
	}
}



template <typename T>
void Strassen(int n, T A[][N], T B[][N], T C[][N]) {
	T A11[N][N], A12[N][N], A21[N][N], A22[N][N];
	T B11[N][N], B12[N][N], B21[N][N], B22[N][N];
	T C11[N][N], C12[N][N], C21[N][N], C22[N][N];
	T M1[N][N], M2[N][N], M3[N][N], M4[N][N], M5[N][N], M6[N][N], M7[N][N];
	T AA[N][N], BB[N][N];

	if (n == 2) {  //2-order  
		Matrix_Multiply(A, B, C);
	}
	else {
		//将矩阵A和B分成阶数相同的四个子矩阵,即分治思想。  
		for (int i = 0; i<n / 2; i++) {
			for (int j = 0; j<n / 2; j++) {
				A11[i][j] = A[i][j];
				A12[i][j] = A[i][j + n / 2];
				A21[i][j] = A[i + n / 2][j];
				A22[i][j] = A[i + n / 2][j + n / 2];

				B11[i][j] = B[i][j];
				B12[i][j] = B[i][j + n / 2];
				B21[i][j] = B[i + n / 2][j];
				B22[i][j] = B[i + n / 2][j + n / 2];
			}
		}

		//Calculate M1 = (A0 + A3) × (B0 + B3)  
		Matrix_Add(n / 2, A11, A22, AA);
		Matrix_Add(n / 2, B11, B22, BB);
		Strassen(n / 2, AA, BB, M1);

		//Calculate M2 = (A2 + A3) × B0  
		Matrix_Add(n / 2, A21, A22, AA);
		Strassen(n / 2, AA, B11, M2);

		//Calculate M3 = A0 × (B1 - B3)  
		Matrix_Sub(n / 2, B12, B22, BB);
		Strassen(n / 2, A11, BB, M3);

		//Calculate M4 = A3 × (B2 - B0)  
		Matrix_Sub(n / 2, B21, B11, BB);
		Strassen(n / 2, A22, BB, M4);

		//Calculate M5 = (A0 + A1) × B3  
		Matrix_Add(n / 2, A11, A12, AA);
		Strassen(n / 2, AA, B22, M5);

		//Calculate M6 = (A2 - A0) × (B0 + B1)  
		Matrix_Sub(n / 2, A21, A11, AA);
		Matrix_Add(n / 2, B11, B12, BB);
		Strassen(n / 2, AA, BB, M6);

		//Calculate M7 = (A1 - A3) × (B2 + B3)  
		Matrix_Sub(n / 2, A12, A22, AA);
		Matrix_Add(n / 2, B21, B22, BB);
		Strassen(n / 2, AA, BB, M7);

		//Calculate C0 = M1 + M4 - M5 + M7  
		Matrix_Add(n / 2, M1, M4, AA);
		Matrix_Sub(n / 2, M7, M5, BB);
		Matrix_Add(n / 2, AA, BB, C11);

		//Calculate C1 = M3 + M5  
		Matrix_Add(n / 2, M3, M5, C12);

		//Calculate C2 = M2 + M4  
		Matrix_Add(n / 2, M2, M4, C21);

		//Calculate C3 = M1 - M2 + M3 + M6  
		Matrix_Sub(n / 2, M1, M2, AA);
		Matrix_Add(n / 2, M3, M6, BB);
		Matrix_Add(n / 2, AA, BB, C22);

		//Set the result to C[][N]  
		for (int i = 0; i<n / 2; i++) {
			for (int j = 0; j<n / 2; j++) {
				C[i][j] = C11[i][j];
				C[i][j + n / 2] = C12[i][j];
				C[i + n / 2][j] = C21[i][j];
				C[i + n / 2][j + n / 2] = C22[i][j];
			}
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值