1005 继续(3n+1)猜想 (25分)
卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。
当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对 n=3 进行验证的时候,我们需要计算 3、5、8、4、2、1,则当我们对 n=5、8、4、2 进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这 4 个数已经在验证3的时候遇到过了,我们称 5、8、4、2 是被 3“覆盖”的数。我们称一个数列中的某个数 n 为“关键数”,如果 n 不能被数列中的其他数字所覆盖。
现在给定一系列待验证的数字,我们只需要验证其中的几个关键数,就可以不必再重复验证余下的数字。你的任务就是找出这些关键数字,并按从大到小的顺序输出它们。
输入格式:
每个测试输入包含 1 个测试用例,第 1 行给出一个正整数 K (<100),第 2 行给出 K 个互不相同的待验证的正整数 n (1<n≤100)的值,数字间用空格隔开。
输出格式:
每个测试用例的输出占一行,按从大到小的顺序输出关键数字。数字间用 1 个空格隔开,但一行中最后一个数字后没有空格。
思路
第一次:我是用2个数组精选筛选然后得到我们要的关键数字,然后进行升序,最后输出即可。
第二次:记录被覆盖的数,对比得出结果即可
第二次的结构比第一次好很多,而且思路更清晰
#include<stdio.h>
int main()
{
int K;
scanf("%d",&K);
int a[K],b[K];
for(int i=0;i<K;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
for(int i=0;i<K;i++)
{
while(a[i]!=1)
{
if(a[i]%2==0)