音乐处理原理第二章:信号傅里叶分析

本文深入探讨了傅里叶变换在音乐信号处理中的核心作用,从模拟信号和波形函数相似性出发,详细解释了傅里叶变换的定义、复数表达以及在周期性和非周期性信号中的应用。此外,还介绍了离散傅里叶变换(DFT)、快速傅里叶变换(FFT)和短时傅里叶变换(STFT),阐述了它们在数字信号处理中的重要性,特别是STFT如何解决傅里叶变换对瞬态信息分析的局限性。
摘要由CSDN通过智能技术生成

简述傅里叶变换

模拟信号

波形函数通式: A s i n ( 2 π ( ω t − φ ) ) Asin(2\pi(\omega t - \varphi)) Asin(2π(ωtφ));其中 A A A是振幅, ω \omega ω是频率, φ \varphi φ是相位。
为了方便研究,只对一段很小时间段内声音模拟信号进行分析,一般认为这一小段波形的振幅大致是相等,即功率相等。此时的模拟信号函数 f ( t ) f(t) f(t)可以看作多个频率不等的波形函数叠加而成。

波形函数相似

  • 借助定积分 ∫ t ∈ R f ( t ) ⋅ g ( t ) d t \int_{t\in R}{f(t)}\cdot{g(t)dt} tRf(t)g(t)dt,如果 f f f g g g越相似,则定积分会越大。
  • 对于相同振幅相同频率下的两个波形函数,相位越接近则两个波形函数越相似
  • 引入一个标准波形函数: cos ⁡ ω , φ ( t ) = 2 cos ⁡ ( 2 π ( ω t − φ ) ) \cos_{\omega, \varphi}(t) = \sqrt{2}\cos(2\pi(\omega t - \varphi)) cosω,φ(t)=2 cos(2π(ωtφ)),易得 φ ∈ [ 0 , 1 ) \varphi \in [0,1) φ[0,1)

傅里叶变换的定义

对任一个模拟信号函数 f ( t ) f(t) f(t),可以定义:
d ω = max ⁡ φ ∈ [ 0 , 1 ) ( ∫ t ∈ R f ( t ) cos ⁡ ω , φ ( t ) d t ) , φ ω = arg max ⁡ φ ∈ [ 0 , 1 ) ( ∫ t ∈ R f ( t ) cos ⁡ ω , φ ( t ) d t ) d_\omega = \underset{\varphi \in [0,1)}{\max}\big(\int_{t\in \R}f(t)\cos_{\omega, \varphi}(t)dt\big), \\ \varphi_\omega = \underset{\varphi \in [0,1)}{\argmax}\big(\int_{t\in \R}f(t)\cos_{\omega, \varphi}(t)dt\big) dω=φ[0,1)max(tRf(t)cosω,φ(t)dt),φω=φ[0,1)argmax(tRf(t)cosω,φ(t)dt)
d ω d_\omega dω表示模拟信号函数 f f f在频率 ω \omega ω下的最大强度, φ ω \varphi_\omega φω表示到达最大强度下的相位。而 f ( t ) f(t) f(t)傅里叶变换即获取 f ( t ) f(t) f(t)在所有频率下的 d ω d_\omega dω φ ω \varphi_\omega φω。(即找出所有频率的最相似波形函数)
根据这个定义,要计算机算最优值是很困难的。可以利用复数概念重新定义傅里叶变换。

复数的极坐标表达

一个复数的定义式为 c = a + b i c=a+bi c=a+bi a a a是实数轴上的值, b b b是虚数轴上的值。那么复数在直角坐标系上的点为 ( a , b ) (a,b) (a,b),转换成用极坐标表示则为 ( ρ cos ⁡ θ , ρ sin ⁡ θ ) (\rho\cos\theta, \rho\sin\theta) (ρcosθ,ρsinθ),那么复数 c = ρ ( cos ⁡ θ + i sin ⁡ θ ) c=\rho (\cos\theta+i\sin\theta) c=ρ(cosθ+isinθ)。利用公式 e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta} = \cos\theta + i\sin\theta eiθ=cosθ+isinθ,则有:
c = ρ e i θ , 其 中 ρ 即 为 ∣ c ∣ , 故 : c = ∣ c ∣ ⋅ e i θ c=\rho e^{i\theta},_{其中\rho即为|c|,故:} \\ c=|c|\cdot e^{i\theta} c=ρeiθ,ρcc=ceiθ

傅里叶变换的复数定义

f ( t ) f(t) f(t)在频率 ω \omega ω下的 d ω d_\omega dω φ ω \varphi_\omega φω看作一个极坐标点 ( d ω , − 2 π φ ω ) (d_\omega,-2\pi\varphi_\omega) (dω,2πφω)。将其转换成复数表达则为 d ω cos ⁡ ( − 2 π φ ω ) + i d ω sin ⁡ ( − 2 π φ ω ) d_\omega \cos(-2\pi\varphi_\omega)+id_\omega \sin(-2\pi\varphi_\omega) dωcos(2πφω)+idωsin(2πφω)。那么令 c ω c_\omega cω
c ω = ( d ω cos ⁡ ( − 2 π φ ω ) + i d ω sin ⁡ ( − 2 π φ ω ) ) / 2 = d ω 2 ⋅ e − 2 π i φ ω c_\omega= \big(d_\omega \cos(-2\pi\varphi_\omega)+id_\omega \sin(-2\pi\varphi_\omega)\big)/\sqrt{2} \\= \frac{d_\omega}{\sqrt{2}}\cdot e^{-2\pi i\varphi_\omega} cω=(dωcos(2πφω)+idωsin(2πφω))/2 =2 dωe2πiφω
那么 f ( t ) f(t) f(t)傅里叶变换后的函数 f ^ \widehat{f} f 即是一个关于从 ω \omega ω到复数 c ω c_\omega cω的函数:
f ^ ( ω ) = c ω \widehat{f}(\omega) = c_\omega f (ω)=cω
傅里叶转换后的 c ω c_\omega cω傅里叶系数Fourier coefficient。那么傅里叶变换可以用以下方式表达:
f ^ ( ω ) = ∫ t ∈ R f ( t ) e − 2 π i ω t d t = ∫ t ∈ R f ( t ) cos ⁡ ( 2 π ω t ) d t + i ∫ t ∈ R f ( t ) sin ⁡ ( − 2 π ω t ) d t \widehat{f}(\omega) = \int_{t\in \R}f(t)e^{-2\pi i\omega t}dt \\= \int_{t\in\R}f(t)\cos(2\pi\omega t) dt + i\int_{t\in R}f(t)\sin(-2\pi\omega t) dt f (ω)=tRf(t)e2πiωtdt=tRf(t)cos(2πωt)dt+itRf(t)sin(2πωt)dt
由公式可得 c ω c_\omega cω的实数部是信号函数 f f f和余弦函数相似度,虚数部是 f f f和正弦函数相似度。通过傅里叶变换的复数表达,把求最优值(这里用到正交的概念)转变成求一个积分, c ω c_\omega cω的模 ∣ c ω ∣ |c_\omega| cω是傅里叶系数的幅度magnitude。把函数 f f f变换成 ∣ f ^ ∣ |\widehat{f}| f 称为幅度傅里叶变换magnitude Fourier transform
根据 c ω c_\omega cω定义可以反推 d ω d_\omega dω φ ω \varphi_\omega φω
d ω = 2 ∣ f ^ ( ω ) ∣ φ ω = − γ ω 2 π ∣ f ^ ( ω ) ∣ 和 γ ω 即 c ω 的 极 坐 标 d_\omega = \sqrt{2}|\widehat{f}(\omega)| \\ \varphi_\omega = -\frac{\gamma_\omega}{2\pi} \\ |\widehat{f}(\omega)|和\gamma_\omega即c_\omega的极坐标 dω=2 f (ω)φω=2πγωf (ω)γωcω

傅里叶逆变换

根据上述傅里叶变换公式,可以推出傅里叶逆变换:
f ( t ) = ∫ w ∈ R + 2 d ω ⋅ cos ⁡ ( 2 π ( ω t − φ ω ) ) d ω    ⟹    ∫ w ∈ R c ω ⋅ e 2 π i ω t d ω f(t) = \int_{w\in \R_{+}}\sqrt{2}d_\omega \cdot \cos(2\pi(\omega t-\varphi_\omega))d\omega \\ \implies \int_{w\in \R}c_\omega \cdot e^{2\pi i \omega t}d\omega f(t)=wR+2 dωcos(2π(ωtφω))dωwRcωe2πiωtdω

信号和信号空间

数字信号

数字信号则是离散时间下的模拟信号。一般对模拟信号用采样sampling来获取数字信号。
采样操作:
x ( n ) = f ( n ⋅ T ) x(n) = f(n\cdot T) x(n)=f(nT)
x ( n ) x(n) x(n)则称作在 n ⋅ T n\cdot T nT时刻下对 f ( t ) f(t) f(t)的采样。 T > 0 T\gt0 T>0 n ∈ Z n\in Z nZ
采样之后,则还要对数字信号进行量化quantization,即通过数字信号去计算任意时刻的值。
量化操作:
Q ( a ) = s i g n u m ( a ) ⋅ Δ ⋅ ⌊ ∣ a ∣ Δ + 1 2 ⌋ Q(a) = signum(a)\cdot \Delta \cdot \lfloor{\frac{|a|}{\Delta}+\frac{1}{2}}\rfloor Q(a)=signum(a)ΔΔa+21
称函数 Q Q Q为一个量化器quantizer Δ \Delta Δ是步长。
采样量化都是有损操作,都会损失原本的信息量。

信号空间

引入泛函分析概念,因为模拟信号函数 f f f和数字信号函数 x x x都具备线性性质,可以把它们都放在线性空间中研究。和向量空间类似。现在开始记 f , g f,g f,g为一个模拟信号函数, x , y x,y x,y为一个数字信号函数。现在把模拟信号函数看成是 R → C R\rightarrow C RC的函数,数字信号看成 Z → C Z\rightarrow C ZC的函数。
类似向量,信号函数可在 希尔伯特空间 内给定义无穷维的内积:
1. 若 空 间 满 足 ∑ Z ∥ x ( n ) ∥ 有 极 限 , 称 为 ℓ 2 ( Z ) 空 间 , 此 时 有 内 积 : ⟨ x ∣ y ⟩ = ∑ Z x ( n )   y ( n ) ‾ 2. 若 空 间 满 足 ∫ R ∥ f ( t ) ∥ d t 有 极 限 , 称 为 L 2 ( R ) 空 间 , 此 时 有 内 积 : ⟨ f ∣ g ⟩ = ∫ R f ( t ) g ( t ) ‾ d t 1.若空间满足 \sum_{Z}\|x(n)\|有极限,称为\ell^2(\Z)空间,此时有内积: \\ \langle x|y\rangle = \sum_{\Z}x(n)\ \overline{y(n)} \\ 2.若空间满足 \int_{R}\|f(t)\|dt有极限,称为L^2(\R)空间,此时有内积: \\ \langle f|g\rangle= \int_{\R}f(t) \overline{g(t)} dt 1.Zx(n)2(Z)xy=Zx(n) y(n)2.Rf(t)dtL2(R)fg=Rf(t)g(t)dt
如果f(t)是周期函数,那么总能把周期限定在[0,1)内,则有:
3. 若 空 间 满 足 ∫ [ 0 , 1 ) ∥ f ( t ) ∥ d t 有 极 限 , 称 为 L 2 ( [ 0 , 1 ) ) 空 间 , 此 时 有 内 积 : ⟨ f ∣ g ⟩ = ∫ [ 0 , 1 ) f ( t ) g ( t ) ‾ d t 3.若空间满足 \int_{[0,1)}\|f(t)\|dt有极限,称为L^2([0,1))空间,此时有内积: \\ \langle f|g\rangle = \int_{[0,1)}f(t) \overline{g(t)} dt 3.[0,1)f(t)dtL2([0,1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值