初学对数的好题。
前置知识:对数
首先我们要知道对数是什么。
若 a x = b a^x=b ax=b 则称 x = log a b x = \log_ab x=logab。
下面介绍几个常用的公式:
-
log a b = log c b log c a \log_ab = \dfrac{\log_cb}{\log_ca} logab=logcalogcb
-
log a b ∗ c = log a b + log a c \log_ab*c = \log_ab+\log_ac logab∗c=logab+logac
-
log a n b m = m n ∗ log a b \log_{a^n}b^m = \dfrac{m}{n}* \log_ab loganbm=nm∗logab
有部分资料上还有其他的一些,但本质上都是由这些推导出来的。
公式的证明就是转换成指数运算,然后在指数中操作。
解题思路:
题目中给出的式子其实可以拆成两部分,分别是:
∏
i
=
1
n
s
i
−
48
\prod_{i=1}^n{s_i-48}
∏i=1nsi−48 和
∏
i
=
1
n
a
i
\prod_{i=1}^n a^i
∏i=1nai,后者即
a
n
×
(
n
−
1
)
2
a^{\frac {n\times(n-1)}{2}}
a2n×(n−1) ,然后我们对这两部分分别开
log
10
\log_{10}
log10,再加上一就可以得到结果的位数,这一条是由公式2和3推导出来的。
具体做法中,使用公式2将所有的值分解下来计算,最后相加,得到结果。
总结:
对数是常用的知识点,其作用主要体现在把一个相乘的问题转化为相加的问题,这一点在网络流等算法的建模中也有较为广泛的应用。
提示:
对数函数在 库里
代码:
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
long long T,n,len;
char s[1000050];
double ans;
int main(){
scanf("%lld",&T);
while(T--){
scanf("%lld",&n);
scanf("%s",s);
len=strlen(s);
ans=0;
for(int i=0;i<len;i++)ans+=log10(abs(s[i]-48));
ans+=0.5*len*(len-1)*log10(n);
printf("%lld\n",(long long)ans+1ll);
}
return 0;
}