Coursera Deeplearning.ai「深度学习」课程笔记L4.W1卷积神经网络

1 - 边缘检测 & 过滤器

1.1 - 过滤器类别

一般过滤器

[ 1 0 − 1 1 0 − 1 1 0 − 1 ] \begin{bmatrix} 1 & 0 & -1\\ 1 & 0 & -1\\ 1 & 0 & -1 \end{bmatrix} 111000111

Sobel过滤器

[ 1 0 − 1 2 0 − 2 1 0 − 1 ] \begin{bmatrix}1 & 0 & - 1 \\ 2 & 0 & - 2 \\ 1 & 0 & - 1 \end{bmatrix} 121000121

Scharr过滤器

[ 3 0 − 3 10 0 − 10 3 0 − 3 ] \begin{bmatrix} 3& 0 & - 3 \\ 10 & 0 & - 10 \\ 3 & 0 & - 3 \end{bmatrix} 31030003103

1.2 - 编程中的卷积(convolution)

不同的编程语言有不同的函数,而不是用“ ∗ * ”来表示卷积。所以在编程练习中,你会使用一个叫conv_forward的函数。如果在tensorflow下,这个函数叫tf.conv2d。在其他深度学习框架中,在后面的课程中,你将会看到Keras这个框架,在这个框架下用Conv2D实现卷积运算。所有的编程框架都有一些函数来实现卷积运算。

2 - Padding(填充)

如果有一个 n × n n×n n×n的图像,用一个 f × f f×f f×f的过滤器卷积,输出的图像是 ( n − f + 1 ) × ( n − f + 1 ) (n-f+1)×(n-f+1) (nf+1)×(nf+1)维。

2.1 - Valid卷积

在没有填充的情况下进行卷积,也就是输出的图像是 ( n − f + 1 ) × ( n − f + 1 ) (n-f+1)×(n-f+1) (nf+1)×(nf+1)

2.2 - Same卷积

假设填充 p p p个像素点,那么 p = ( f − 1 ) / 2 p=(f-1)/2 p=(f1)/2

习惯上,计算机视觉中, f f f通常是奇数

3 - 步长(strided convolutions)

如果有一个 n × n n×n n×n的矩阵或者 n × n n×n n×n的图像,与一个 f × f f×f f×f的矩阵卷积(过滤器)。Padding是 p p p,步幅是 s s s,那么卷积后的维度是
⌊ n + 2 p − f s + 1 ⌋ × ⌊ n + 2 p − f s + 1 ⌋ ⌊\frac{n + 2p - f}{s}+1⌋\times⌊\frac{n + 2p - f}{s}+1⌋ sn+2pf+1×sn+2pf+1,其中 ⌊ ⋅ ⌋ ⌊·⌋ 表示的是向下取整(floor)。

4 - 卷积神经网络中的各种标记

l l l层为例

  • f [ l ] f^{[l]} f[l] = 过滤器大小 (filter size)
  • p [ l ] p^{[l]} p[l] = padding的数量
  • s [ l ] s^{[l]} s[l] = 步幅
  • n c [ l ] n_{c}^{[l]} nc[l] = 过滤器数量
  • 下标H、W、c分别表示图片的高度、宽度和通道数(深度)

输入: n H [ l − 1 ] × n W [ l − 1 ] × n c [ l − 1 ] n_{H}^{\left\lbrack l - 1 \right\rbrack} \times n_{W}^{\left\lbrack l - 1 \right\rbrack} \times n_{c}^{\left\lbrack l - 1\right\rbrack} nH[l1]×nW[l1]×nc[l1] (即上一层的激活值)

输出: n H [ l ] × n W [ l ] × n c [ l ] n_{H}^{[l]} \times n_{W}^{[l]} \times n_{c}^{[l]} nH[l]×nW[l]×nc[l]

过滤器: f [ l ] × f [ l ] × n c [ l − 1 ] f^{[l]} \times f^{[l]} \times n_{c}^{\left\lbrack l - 1 \right\rbrack} f[l]×f[l]×nc[l1]

根据输入和过滤器及padding、步幅等,可以计算出:

n H [ l ] = ⌊ n H [ l − 1 ] + 2 p [ l ] − f [ l ] s [ l ] + 1 ⌋ n_{H}^{[l]} = \lfloor\frac{n_{H}^{\left\lbrack l - 1 \right\rbrack} +2p^{[l]} - f^{[l]}}{s^{[l]}} +1\rfloor nH[l]=s[l]nH[l1]+2p[l]f[l]+1

n W [ l ] = ⌊ n W [ l − 1 ] + 2 p [ l ] − f [ l ] s [ l ] + 1 ⌋ n_{W}^{[l]} = \lfloor\frac{n_{W}^{\left\lbrack l - 1 \right\rbrack} +2p^{[l]} - f^{[l]}}{s^{[l]}} +1\rfloor nW[l]=s[l]nW[l1]+2p[l]f[l]+1

激活值 a [ l ] a^{[l]} a[l] n H [ l ] × n W [ l ] × n c [ l ] n_{H}^{[l]} \times n_{W}^{[l]} \times n_{c}^{[l]} nH[l]×nW[l]×nc[l]

权重参数 W W W f [ l ] × f [ l ] × n c [ l − 1 ] × n c [ l ] f^{[l]} \times f^{[l]} \times n_{c}^{[l - 1]} \times n_{c}^{[l]} f[l]×f[l]×nc[l1]×nc[l]

偏差参数 b b b 1 × 1 × 1 × n c [ l ] 1×1×1×n_{c}^{[l]} 1×1×1×nc[l]

5 - 池化层(pooling layers)

  • 最大池化的输出大小: ⌊ n + 2 p − f s + 1 ⌋ \lfloor\frac{n + 2p - f}{s} + 1\rfloor sn+2pf+1
  • 池化的超级参数包括过滤器大小 f f f和步幅 s s s,常用的参数值为 f = 2 f=2 f=2 s = 2 s=2 s=2, 应用频率非常高,其效果相当于高度和宽度缩减一半。也有使用 f = 2 f=2 f=2 s = 2 s=2 s=2的情况。
  • 最大池化时,大部分情况下很少用padding。目前 p p p最常用的值是0,即 p = 0 p=0 p=0
  • 最大池化的输入就是 n H × n W × n c n_{H} \times n_{W} \times n_{c} nH×nW×nc,假设没有padding,则输出 ⌊ n H − f s + 1 ⌋ × ⌊ n w − f s + 1 ⌋ × n c \lfloor\frac{n_{H} - f}{s} +1\rfloor \times \lfloor\frac{n_{w} - f}{s} + 1\rfloor \times n_{c} snHf+1×snwf+1×nc
  • 需要注意的一点是,池化过程中没有需要学习的参数。执行反向传播时,反向传播没有参数适用于最大池化。只有这些设置过的超参数,可能是手动设置的,也可能是通过交叉验证设置的。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值