- 博客(38)
- 收藏
- 关注
原创 python计算机视觉——第十章 OpenCV
读取图像后,如果没有给定新尺寸,则用 pyrDown() 进行下采样,创建一个尺寸为原 图像大小一半的新图像,然后将该图像转换为灰度图像,并传递到一个 SURF 关键点检测对象;假设一个目标像素在t时刻亮度为\(I(x,y,t)\),在t+δt时刻运动[δx,δy]后与t时刻具有相同的亮度,即\(I(x,y,t){=}I(x{+}\delta x, y{+}\delta y, t{+}\delta t)\)。在开始检测角点时,我们需要载入实际图像,并转换成灰度图像,提取“利用跟踪的好的特征”点。
2024-09-13 20:34:59 427
原创 python计算机视觉——第九章 图像分割
这些区域可以是图像的前景和背景或者图像中一些单独的对象。这些区域可以利用一些诸如颜色、边界或近邻相似性等特征进行构建。
2024-09-12 21:21:07 42
原创 python计算机视觉——第七章 图像搜索
在大型图像数据库上,CBIR(Content-Based Image Retrieval,基于内容的图像检索)技术用于检索在视觉上具相似性的图像。这样返回的图像可以是颜色相似、纹理相似、图像中的物体或场景相似;对于高层查询,比如寻找相似的物体,将查询图像与数据库中所有的图像进行完全比较(比如用特征匹配)往往是不可行的。在数据库很大的情况下,这样的查询方式会耗费过多时间。研究者成功地引入文本挖掘技术到CBIR 中处理问题,使在数百万图像中搜索具有相似内容的图像成为可能。
2024-09-05 22:45:03 733
原创 python计算机视觉——第五章 多视图几何
多视图几何时利用在不同视点所拍摄图像间的关系,来研究照相机之间或者特征之间关系的一门科学。多视图几何中最重要的内容是双视图几何。如果有一个场景的两个视图以及视图中的对应图像点,那么根据照相机的空间相对位置关系、照相机的性质以及三维场景点的位置,可以得到对这些图像点的一些几何关系约束。通过外极几何来描述这些几何关系。
2024-09-01 21:33:07 405
原创 python计算机视觉——第四章 照相机模型与增强现实
针孔照相机模型(有时称为射影照相机模型)是计算机视觉中广泛使用的照相机模型。对于大多数应用来说,针孔照相机模型简单,并且具有足够的精确度。这个名字来源于一种类似暗箱机的照相机。该照相机从一个小孔采集射到暗箱内部的光线。在针孔照相机模型中,在光线投影到图像平面之前,从唯一一个点经过,也就是照相机中心C。由图像坐标轴和三维坐标系中的x 轴和y 轴对齐平行的假设,我们可以得出针孔照相机的投影性质。照相机的光学坐标轴和z 轴一致,该投影几何可以简化成相似三角形。
2024-08-28 22:00:00 1213
原创 Python计算机视觉——第一章 基本的图像操作和处理
本章讲解操作和处理图像的基础知识,将通过大量示例介绍处理图像所需的Python工具包,并介绍用于读取图像、图像转换和缩放、计算导数、画图和保存结果等的基本工具。
2024-08-19 12:29:16 166
原创 机器学习——第十四章 概率图模型
MRF使用势函数来定义多个变量的概率分布函数,其中每个(极大)团对应一个势函数,一般团中的变量关系也体现在它所对应的极大团中,因此常常基于极大团来定义变量的联合概率分布函数。HMM中的变量分为两组:状态变量与观测变量,其中状态变量一般是未知的,因此又称为“隐变量”,观测变量则是已知的输出值。对于MRF中的势函数,势函数主要用于描述团中变量之间的相关关系,且要求为非负函数,直观来看:势函数需要在偏好的变量取值上函数值较大,例如:若x1与x2成正相关,则需要将这种关系反映在势函数的函数值中。
2024-08-16 14:07:59 444
原创 机器学习——第十二章 计算学习理论
计算学习理论(computational learning theory)研究的是关于通过"计算"来进行"学习"的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法设计。假设给定训练集D,其中所有的训练样本都服从一个未知的分布\(\mathcal{D}\),且它们都是在总体分布D中独立采样得到,即。
2024-08-15 16:10:33 301
原创 机器学习——第十一章 特征选择与稀疏学习
对一个学习任务来说,给定属性集,其中有些属性可能很关键、很有用,另一些属性则可能没什么用.我们将属性称为"特征" (feature) ,对当前学习任务有用的属性称为"相关特征" (relevant feature) 、没什么用的属性称为"无关特征" (irrelevant feature). 从给远的特征集合中选择出相关特征于集的过程,称为"特征选择" (feature selection)。我们不能直接用排列组合进行遍历所有可能子集,这样会遭遇组合爆炸。所以我们选择。
2024-08-13 10:26:48 768
原创 机器学习——第十章 降维与度量学习
流形学习有很多应用,例如数据可视化,数据压缩,数据生成,特征提取等。\(\text{令 }\mathbf{Z}=(\boldsymbol{z}_{1},\boldsymbol{z}_{2},\ldots,\boldsymbol{z}_{m})\in\mathbb{R}^{d^{\prime}\times m}, (\mathbf{W})_{ij}=w_{ij}\\\mathbf{M}=(\mathbf{I}-\mathbf{W})^{\mathrm{T}}(\mathbf{I}-\mathbf{W})\)
2024-08-08 20:24:08 366
原创 机器学习——第九章 聚类
聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”,通过这样的划分,每个簇可能对应于一些潜在的概念(类别),这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇所对应的概念语义需由使用者来把握和命名。聚类既能作为一个单独过程,用于寻找数据内在的分布结构,也可作为分类等其他学习任务的前驱过程。
2024-08-08 11:19:09 591
原创 机器学习——第五章 神经网络
基于梯度的搜索时使用最为广泛的参数寻优方法,梯度下降法是沿着负梯度方向搜索最优解,因为负梯度方向是函数在当前点的方向导数最小的方向,方向导数是函数沿着某个方向的变化率,它与函数的梯度和该方向的单位向量的点积相等,当两个向量的夹角为180度时,点积最小,也就是说,当单位向量与梯度的反方向一致时,方向导数最小。Elman网络是最常用的递归神经网络之一,如下所示,它的结构与多层前馈网络很相似,但隐层神经元的输出被反馈回来,与下一时刻输入层神经元提供的信号一起,作为隐层神经元在下一时刻的输入。
2024-08-04 19:00:14 1245
原创 机器学习——第八章 集成学习
Boosting是一种可将弱学习器提升为强学习器的算法:先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本的分布进行调整,使得先前基学习器做错的训练样本在后续受到更多关注,然后基于调整后的样本分布来训练下一个基学习器;在一般经验中,如果把好坏不等的个体学习器掺到一起,那么通常结果会是比最坏的要好一些,比最好的要坏一些,要获得好的集成,个体学习器应“好而不同”,即个体学习器要有一定的“准确性”,并且要有“多样性”,也就意味着学习器间具有差异,如下所示。其中,E是集成的泛化误差,
2024-08-03 14:51:11 1181
原创 机器学习——第七章 贝叶斯分类器
对于贝叶斯网学习而言,模型就是一个贝叶斯网,同时,每个贝叶斯网描述了一个在训练数据上的概率分布,自有一套编码机制能使那些经常出现的样本有更短编码,所以我们应该选择那个综合编码长度最短的贝叶斯网,这就是“最小描述长度”准则。推断指的是通过已知变量观测值来推测待查询变量的过程,最理想的是直接根据贝叶斯网定义的联合概率分布来精确计算后验概率,但这是一个N P NPNP难问题,在现实应用中,贝叶斯网的近似推断常用吉布斯采样来完成,这是一种随机采样办法,如下所示。在“顺序”结构中,给定x的值,则y与z条件独立;
2024-07-29 22:45:07 956
原创 机器学习——第六章 支持向量机
与此不同,支持向量回归假设我们能容忍f ( x ) 与y之间最多有ε的偏差,即仅当f ( x )与y之间的差别绝对值大于ε时才计算损失,如下图所示,相当于以f ( x )为中心,构建了一个宽度为2 ε 的间隔带,若训练样本落入此间隔带,则认为是被预测正确的。SVM的目的是求出与支持向量有最大距离的超平面,以每个样本为圆心,该距离为半径作圆,可以近似认为圆内所有的点都与该样本属于相同分类,若圆内出现了噪声,那么该噪声所造成的错误分类也将最大化,因此SVM对噪声是敏感的。为法向量,决定了超平面的方向;
2024-07-29 21:56:40 866
原创 机器学习——第四章 决策树
postpruning则是先从训练集生成一个完整的决策树,然后自底向上的对非叶子结点进行考察,如果将该结点对应的子树替换为叶子结点能够带来决策树泛化性能的提升,则将该子树替换为叶子结点。prepruning预剪枝指在决策树生成过程中,对每个结点在划分前进行估计,若当前结点的划分不能带来决策树泛化能力的提升,则停止划分,并将当前结点标记为叶子结点。决策树学习的关键在于如何选择最优划分属性,随着树的不断划分,树的结点包含的样本尽可能属于同一类型最好,即结点的纯度(purity)越来越高。
2024-07-28 20:43:14 575
原创 机器学习——第三章 线性模型
假设,d表示x的维度(属性),表示x在第i个属性上的值。线性模型(linear model)试图学得一个通过属性的线性组合来进行预测的函数,即:向量形式为:其中,w和b学得之后,模型就确定了。w直观的表达了各个属性在预测中的重要性,因此线性模型具有很好的可解释性(comprehensibility)。
2024-07-28 19:13:33 713
原创 机器学习——第二章 模型评估与选择
将分类错误的样本数占样本总数的比例称为错误率,即在m个样本中有a个样本分类错误,则错误率E=a/m。1-a/m称为精度。更一般的,将机器学习器的实际预测输出与样本的真实输出之间的差异称为误差。学习器在训练集上的误差称为“训练误差”or“经验误差(empirical error)”,在新样本上的误差称为泛化误差(generalization error)。由于不知道新样本的特征,实际能做的只是尽力使经验误差最小化。但很多时候虽然能在训练集上做到分类错误率为0,但多数情况这种分类器的性能并不好。
2024-07-28 15:35:33 857
原创 机器学习——第一章 绪论
机器学习致力于研究如何通过计算的手段,利用经验来玫善系统自身的性能在计算机系统中,"经验"通常以"数据"形式存在,因此,机器学习所研究的主要内容,是关于在计算机上从数据中产生"模型" (model) 的算法,即"学习算法" (learning algorithm)。给定基于某种归纳偏好的算法产生的模型A和基于另一种归纳偏好的算法产生的模型B,有时我们会注意到,A和B在不同的样本集上的表现各有好坏,有时候A的效果更好,有时候B的效果更好。,前者是基于某种领域知识而产生的,后者则是基于对训练样本的分析进行的。
2024-07-26 19:53:26 996
原创 机器学习实战——第三章 决策树
图所示的流程图就是一个决策树,正方形代表判断模块(decisionblock),椭圆形代表终止模块(terminating block),表示已经得出结论,可以终止运行。从判断模块引出的左右箭头称作分支(branch),它可以到达另一个判断模块或者终止模块。
2024-07-20 19:26:13 667
原创 机器学习实战——第二章 K-近邻算法
优点:精度高、对异常值不敏感、无数据输入假定。缺点:计算复杂度高、空间复杂度高。适用数据范围:数值型和标称型。收集数据:可以用任何方法。准备数据:距离计算所需要的数据,最好是结构化的数据格式。分析数据:可以使用任何方法。训练算法:不适用于k-近邻算法。测试算法:计算错误率。使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。
2024-07-20 10:44:41 837
原创 机器学习实战——第一章 机器学习基础
简单地说,机器学习就是把无序的数据转换成有用的信息。机器学习横跨计算机科学、工程技术和统计学等多个学科,需要多学科的专业知识,同时对多任何需要解释并操作数据的邻域都有所裨益。机器学习的主要任务就是分类。有很多机器学习算法非常善于分类,当决定使用某个机器学习算法进行分类时,首先需要做的是算法训练,即学习如何分类。通常我们为算法输入大量已分类数据作为算法的训练集。训练集是用于训练机器学习算法的数据样本集合。
2024-07-16 15:46:04 487
原创 数字图像处理——第十二章 目标识别
本章介绍的模式识别方法主要分为两大邻域:决策理论犯法和结构方法。第一类方法处理的是使用定量描绘子来描述各种模式,如长度、面积和纹理等。第二类方法处理的是由定性描绘子来描述的各种模式。
2024-07-14 09:51:32 1058
原创 数字图像处理——第十一章 标识和描述
将一幅图像分割成多个区域后,分割后的像素集经常以一种合适于计算机进一步处理的形式来表示和描述。表示是直接具体地表示目标,好的表示方法应具有节省存储空间易于特征计算等优点。表示的下一步工作是描述。表示方式的选择要使数据有利于描述工作的展开。当关注的重点是形状特征时,可选择外部表示;当关注的重点是内部属性(如颜色和纹理)时,可选择内部表示。描述是较抽象地表示目标。好的描绘子都应尽可能对目标的大小、平移、旋转等不敏感,这样的描绘子比较通用。
2024-07-14 09:12:06 663
原创 数字图像处理——第十章 图像分割
分割将图像细分为构成它的子区域或物体。形态学图像处理中,输入的是图像,输出的是从图像中提取出来的属性,分割是该方向上的另一步骤。分割将图像细分为构成它的子区域或物体,细分的程度取决于要解决的问题。多数分割算法均基于灰度值的两个基本性质之一:不连续性和相似性。对于不连续的灰度,方法是以灰度突变为基础分割一幅图像,比如图像的边缘。对于相似的灰度,主要方法是根据一组预定义的准则把一幅图像分割为相似的区域。阈值处理、区域生长、区域分割和区域聚合都是这类方法的例子。
2024-07-11 22:02:56 681
原创 数字图像处理——第九章 形态学图像处理
形态学,在此表示数学形态学的内容,将数学形态学作为工具从图像中提取表达和描绘区域形状的有用图像分量,如边界、骨架和凸壳等。我们对预处理或后处理的形态学技术也感兴趣,比如形态学过滤、细化和修剪等。
2024-07-07 09:23:20 882
原创 python文件路径错误问题
2.当路径过长时候添加反斜杠过于麻烦,所以就要使用原始字符串。在字符串的第一个引号前加上小写字母r。1.使用另外一根反斜杠去转义路径分割符的反斜杆。
2024-07-03 11:16:41 275
原创 数字图像处理——第六章 彩色图像处理
彩色图像处理可分为两个主要领域:全彩色处理和伪彩色处理。在第一类中,通常要求图像用全彩色传感器获取,如彩色电视摄像机或彩色扫描仪。在第二类中, 问题是对一种特定的单色灰度或灰度范围赋予一种颜色。
2024-06-30 11:04:09 634
原创 数字图像处理——第五章 图像复原与重建
图像复原技术的主要目的是以预先确定的目标来改善图像。图像增强主要是一个主观过程,而图像复原则大部分是一个客观过程。图像复原试图利用退化现象的某种先验知识来复原被退化的图像。因而复原技术是面向退化模型的,并且采用相反的过程进行处理,以便恢复出原图像。
2024-06-29 10:19:14 1025
原创 数字图像处理——第三章 灰度变换与空间滤波
术语空间域指图像平面本身, 这类图像处理方法直接以图像中的像素操作为基础。换域的图像处 理首先把一幅图像变换到变换域,在变换域中进行处理, 然后通过反变换把处理结果返回到空间域。空间域处理主要分为灰度变换和空间滤波两类。
2024-06-23 10:53:15 887
原创 数字图像处理——第一章 绪论
一幅图像可定义为一个二维函数f(x,y),其中 x 和y 是空间(平面)坐标, 而在任何一对空间坐标(x,y)处的幅值f称为图像在该点处的强度或灰度。当x, y和灰度值f是有限的离散数值时, 我们称该图像为。数字图像是由有限数量的元素组成的,每个元素都有一个特定的位置和幅值。这些元索称为图画元素、 图像元素或像素。像素是广泛用于表示数字图像元素的术语。从图像处理到计算机视觉的这个连续统一体内并没有明确的界限。
2024-06-22 14:04:24 603
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人