数据结构——图

图(Graph)

图的基本概念

图的定义

图可以由顶点集和边集组成

V:(Vertex) 顶点集,eg:{A, B, C, D}

E、Arc:(Edge、Arc弧) 边集,eg:{(A, B), (B, C), (C, D), (D, A)}

  • 顶点两头可以没有边,边的两头必须连接顶点
  • 一个图至少要有一个顶点

有向图

E 是有向边的集合,一条边是两个顶点的有序对,也称为

记 顶点 v 到顶点 w 的弧 为 <v, w>,其中 v 是弧头w 为弧尾,注意用尖括号表示有向边,也称 v 邻接到 w,或 w 邻接自 v。<v, w> != <w, v>


无向图

E 是无向边的集合,一条边是两个顶点的无序对,也称为

记 顶点 v 到顶点 w 的弧 为 (v, w),注意用圆括号表示有向边,也称 顶点 w 和顶点 v 互为邻接点,边 (v, w) 依附于顶点 w 和 v,或边 (v, w) 和顶点 v、w 相关联。


简单图、多重图

只研究简单图

  1. 不存在重复边
  2. 不存在顶点到自身的边


顶点的度、入度和出度

无向图:

度——依附于顶点边的条数,记为 TD(v)
∑ i = 1 n T D ( v i ) = 2 e \begin{array}{l} \sum\limits_{i = 1}^n {TD({v_i})} = 2e \end{array} i=1nTD(vi)=2e
有向图:

入度——以顶点为终点的边,记为 ID(v)——In-degree

出度——以顶点为起点的边,记为 OD(v)——Out-degree
对 于 一 个 顶 点 而 言 , T D ( v ) = I D ( v ) + O D ( v ) 对 于 有   n   个 顶 点 、 e   条 边 的 有 向 图 , ∑ i = 1 n I D ( v i ) = ∑ i = 1 n O D ( v i ) = e 全 部 顶 点 的 入 度 之 和 与 出 度 之 和 相 等 , 并 且 等 于 边 数 。 \begin{array}{l} 对于一个顶点而言,TD(v) = ID(v) + OD(v) \\ 对于有\ n\ 个顶点、e\ 条边的有向图,\sum\limits_{i = 1}^n {ID({v_i})} = \sum\limits_{i = 1}^n {OD({v_i})} = e \\ 全部顶点的入度之和与出度之和相等,并且等于边数。 \end{array} TD(v)=ID(v)+OD(v) n e i=1nID(vi)=i=1nOD(vi)=e

路径、路径长度、回路、简单路径、简单回路、连通、强连通

  • 路径――顶点v,到顶点v之间的一条路径是指顶点序列,VpVi,v, ,.0,vim , vq。

  • 路径长度――路径上边的数目。

  • 回路――第一个顶点和最后一个顶点相同的路径称为回路或环。

  • 简单路径――在路径序列中,顶点不重复出现的路径称为简单路径。

  • 简单回路――除第一个顶点和最后一个顶点外,其余顶点不重复出现的回路称为简单回路。

  • 点到点的距离――从顶点 u 出发到顶点 v 的最短路径若存在,则此路径的长度称为从 u 到 v 的距离。若从 u 到 v 根本不存在路径,则记该距离为无穷*(∞)* 。

  • 无向图中,若从顶点 v 到顶点 w 有路径存在,则称 v 和 w 是连通的。

  • 有向图中,若从顶点 v 到顶点 w 和从顶点 w 到顶点 v 之间都有路径,则称这两个顶点是强连通


子图

有向图与无向图同理
在这里插入图片描述


连通、连通图、连通分量

无向图👉

  • 连通图——图中任意两个顶点都是连通的
  • 连通分量——极大连通子图,不止一个

有向图👉

  • 强连通图——图中任意两个顶点都是强连通的(两个方向均能找到路径)
  • 强连通分量——极大强连通子图,不止一个


生成树——针对连通图(无向图)

生成树

包含图中全部顶点的一个极小连通子图

  1. 包含全部顶点
  2. 若图中顶点数为 n,则生成树有 n - 1 条边


生成森林——针对连通图(无向图)

生成森林

非连通图中,连通分量的生成树构成生成森林。


边的权、带权图(网)、带权路径长度

每条边有权值

带权路径长度:当图是权图时,一条路径上所有边的权值之和,称为该路径的带权路径和长度。



完全图、稀疏图、稠密图

有   C n 2 = n ( n − 1 ) 2   条 边 的 无 向 图 称 为 完 全 图 有   A n 2 = n ( n − 1 )   条 边 的 有 向 图 称 为 有 向 完 全 图 边 数 满 足   E ∣ < ∣ V ∣ log ⁡ ∣ V ∣   的 图 称 为 稀 疏 图 反 之 则 为 稠 密 图 \begin{array}{l} 有\ C_n^2 = \frac{ {n(n - 1)}}{2}\ 条边的无向图称为完全图 \\ 有\ A_n^2 = n(n - 1)\ 条边的有向图称为有向完全图 \\ 边数满足\ E| < |V|\log |V|\ 的图称为稀疏图 \\ 反之则为稠密图 \end{array}  Cn2=2n(n1)  An2=n(n1)  E<VlogV 


有向树

一个顶点的入度为 0 、其余顶点的入度均为 1 的有向图,称为有向树。


⭕图的性质

🔸 有 向 图 和 无 向 图 均 有 :   ∑ i = 1 n T D ( v i ) = 2 e 🔸 有 向 图 : 对 于 一 个 顶 点 而 言 , T D ( v ) = I D ( v ) + O D ( v ) 对 于 有   n   个 顶 点 、 e   条 边 的 有 向 图 , ∑ i = 1 n I D ( v i ) = ∑ i = 1 n O D ( v i ) = e 全 部 顶 点 的 入 度 之 和 与 出 度 之 和 相 等 , 并 且 等 于 边 数 。 🔸 连 通 性 : 对 于   n   个 顶 点 的 无 向 图   G , 若   G   是 连 通 图 , 则 最 少 有   n − 1   条 边 若 G 是 非 连 通 图 , 则 最 多 可 能 有 C n − 1 2 条 边 ( 令   n − 1   条 边 两 两 连 接 ) 对 于   n   个 顶 点 的 有 向 图   G , 若   G   是 强 连 通 图 , 则 最 少 有   n   条 边 ( 令 其 形 成 回 路 ) 🔸 完 全 图 : 有   C n 2 = n ( n − 1 ) 2   条 边 的 无 向 图 称 为 完 全 图 有   A n 2 = n ( n − 1 )   条 边 的 有 向 图 称 为 有 向 完 全 图 \begin{array}{l} 🔸有向图和无向图均有:\ \sum\limits_{i = 1}^n {TD({v_i})} = 2e \\ \\ 🔸有向图:\\对于一个顶点而言,TD(v) = ID(v) + OD(v) \\ 对于有\ n\ 个顶点、e\ 条边的有向图,\sum\limits_{i = 1}^n {ID({v_i})} = \sum\limits_{i = 1}^n {OD({v_i})} = e \\ 全部顶点的入度之和与出度之和相等,并且等于边数。\\ \\ 🔸连通性:\\对于\ n\ 个顶点的无向图\ G,若\ G\ 是连通图,则最少有\ n-1\ 条边 \\ \qquad \qquad \qquad \qquad \qquad \quad若 G 是非连通图,则最多可能有 C_{n - 1}^2 条边(令\ n-1\ 条边两两连接)\\ 对于\ n\ 个顶点的有向图\ G,若\ G\ 是强连通图,则最少有\ n\ 条边(令其形成回路)\\ \\ 🔸完全图:\\ 有\ C_n^2 = \frac{ {n(n - 1)}}{2}\ 条边的无向图称为完全图 \\ 有\ A_n^2 = n(n - 1)\ 条边的有向图称为有向完全图 \\ \end{array} 🔸 i=1nTD(v

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值