1、前言
矩阵向量的算数运算通常指的是矩阵和向量之间的加法、减法、标量乘法、矩阵乘以向量等操作。下面对矩阵向量的算术运算进行总结:
加法:矩阵和向量的加法是将矩阵的每一行分别与向量对应位置的元素进行相加,生成一个新的向量。
例如,对于一个矩阵A和一个向量v,A + v = [a_i + v_i]。
减法:矩阵和向量的减法是将矩阵的每一行分别与向量对应位置的元素进行相减,生成一个新的向量。
例如,对于一个矩阵A和一个向量v,A - v = [a_i - v_i]。
标量乘法:将一个矩阵或向量的每个元素乘以一个标量(实数)。结果是一个新的矩阵或向量,其中每个元素都乘以该标量。
例如,对于一个矩阵A或向量v,c * A = [c * a_ij] 或 c * v = [c * v_i]。
乘法:矩阵和向量之间的乘法是指用矩阵乘以向量,结果是一个新的向量。运算规则是矩阵的每一行与向量对应位置的元素相乘并求和。
例如,对于一个矩阵A和一个向量v,Av = [Σ(a_ij * v_j)]。
幂运算:在矩阵和向量的算术运算中&