矩阵与向量的加法

在Numpy中,矩阵与向量相加时,首先要求即要求矩阵的列数与向量的维数相等。然后就是 矩阵的每一行与向量相加,得出结果。
过程如下图所示:

import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6],[7,8,9]])

z = np.array([1, 2, 3])

print(x + z)

输出
array([[2, 4, 6],
[5, 7, 9],
[8,9,10]])

CUDA C是一种并行计算语言,它允许开发者利用NVIDIA GPU的强大处理能力进行高性能计算。对于矩阵向量加法,CUDA C提供了一种高效的方式通过线程块和共享内存来速运算。 首先,你需要将数据存储在GPU的设备内存(如全局内存)中,每个线程负责矩阵的一部分计算。在CUDA C中,你可以使用`__global__`函数声明来指定一个可以在线程块中运行的函数。这个函数通常会对矩阵的对应元素进行累操作: ```c __global__ void addColumnVector(float* A, float* B, float* result, int rows, int cols) { // 获取当前线程ID const int threadIdx = threadIdx.x; const int blockIdx = blockIdx.x; // 确定计算范围 int rowOffset = blockIdx * blockDim.y + threadIdx; if (rowOffset < rows) { // 计算列向量加法 for (int col = 0; col < cols; ++col) { result[rowOffset * cols + col] = A[rowOffset * cols + col] + B[rowOffset * cols]; } } } ``` 在这个例子中,`A`和`B`是输入的矩阵,`result`是结果矩阵,`rows`和`cols`分别是矩阵的行数和列数。然后,你可以使用`cudaMemcpy`函数将数据从主机复制到设备,并调用`addColumnVector`函数执行加法运算: ```c // ...其他初始化步骤... float* d_A, d_B, d_result; cudaMalloc((void**)&d_A, rows * cols * sizeof(float)); cudaMalloc((void**)&d_B, rows * cols * sizeof(float)); cudaMalloc((void**)&d_result, rows * cols * sizeof(float)); // ...数据复制到GPU... // 调用kernel dim3 threadsPerBlock(cols); dim3 numBlocks(rows / threadsPerBlock + (rows % threadsPerBlock > 0)); addColumnVector<<<numBlocks, threadsPerBlock>>>(d_A, d_B, d_result, rows, cols); // ...同步GPU完成运算并复制回主机... ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值