1、自组织映射神经网络的鸢尾花聚类的原理及流程
自组织映射神经网络(Self-Organizing Map, SOM)是一种用于聚类和数据可视化的人工神经网络模型。在鸢尾花聚类中,SOM 可以用来将鸢尾花数据集分成不同的类别,同时保留数据间的拓扑关系。
SOM的原理是通过竞争学习和自组织的过程,将高维输入空间映射到低维的神经网络结构上。在鸢尾花聚类中,SOM会根据鸢尾花的特征(如花萼长度和宽度,花瓣长度和宽度)将其映射到一个二维的网络中,使得相似的鸢尾花样本被映射到相邻的神经元上。
流程如下:
- 初始化 SOM 神经网络:确定神经网络的结构,设定神经元的初始权重。
- 随机选取一个鸢尾花样本作为输入,并计算该样本与神经元之间的距离。
- 竞争学习:选取距离最近的神经元为胜者,同时调整周围神经元的权重,使得它们也向该样本靠拢。
- 更新权重:根据竞争学习的结果,调整神经元的权重。
- 重复步骤 2-4 直至达到收敛条件。
经过上述流程,SOM会将鸢尾花样本映射到不同的神经元上,形成了聚类结果。同时,SOM的拓扑结构也能够让我们在二维空间中直观地看到各个