给你一个整数数组 A,只有可以将其划分为三个和相等的非空部分时才返回 true,否则返回 false。
形式上,如果可以找出索引 i+1 < j 且满足 (A[0] + A[1] + ... + A[i] == A[i+1] + A[i+2] + ... + A[j-1] == A[j] + A[j-1] + ... + A[A.length - 1]) 就可以将数组三等分。
示例 1:
输出:[0,2,1,-6,6,-7,9,1,2,0,1]
输出:true
解释:0 + 2 + 1 = -6 + 6 - 7 + 9 + 1 = 2 + 0 + 1
示例 2:
输入:[0,2,1,-6,6,7,9,-1,2,0,1]
输出:false
示例 3:
输入:[3,3,6,5,-2,2,5,1,-9,4]
输出:true
解释:3 + 3 = 6 = 5 - 2 + 2 + 5 + 1 - 9 + 4
提示:
3 <= A.length <= 50000
-10^4 <= A[i] <= 10^4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/partition-array-into-three-parts-with-equal-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
分析:
1.数组能分割成相等的三个部分,说明数组所有元素之和必为三的倍数,则当sum(A) % 3 != 0 时返回false
2.sum(A) 为三的倍数,且可分为相等的三段,则:找到有前两段相等,第三段必相等
3.先取第一段等于sum(A)/3的情况,且取最小的下标a[0]+...a[i]的情况(贪心)。
比如:
1+2 == 1+2+(-3)+3==3,
那么我只要关心第一个1+2就行,因为后面的-3+3== 0
同理,
如果有a[0]+..+a[2] == a[0]+...a[4],
则a[3]+a[4] == 0,则可取i0 = 2
说明中间的部分都抵消掉了
则:
代码如下:
func canThreePartsEqualSum(A []int) bool {
sum := 0
for i:=0;i<len(A);i++ {
sum += A[i]
}
if sum % 3 != 0 {
return false
} else {
sum /= 3
}
tmp := A[0]
i := 1
for ;tmp!=sum && i<len(A);i++ {
tmp += A[i]
}
tmp = 0
for j:=i;j<len(A)-1;j++{
tmp += A[j]
if tmp == sum {
return true
}
}
return false
}
另:
leetcode 上给出的 45ms的示例代码现在提交是不能通过的,在[1,-1,1,-1] 会卡住