给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
本题是一个数组子序列求最值的动态规划问题
思考问题的最后一步,我们观察到了数组最后一个元素nums[8]=4,假设前面的连续子数组nums[i...j]的最大值为M,则因为nums[8]是正数,那么 M + nums[8] = M + 4 > M。
那如果nums[8]是一个负数呢?这样的结果就是M+nums[8] < M,所以此时就不加nums[8]
那么,对于子问题,我们就可以转化为以下的思路:
1.如果我们要求 [0....i] (记为F(i))部分的连续子数组的最大,我们需要知道 [0...i-1] (记为F(i-1)) 部分的连续子数组的最大值;
2.判断F(i-1)对于F(i)的影响,我们知道理论上说,F(i-1)是[0...i-1]连续子数组的和的最大值,但是F(i-1)可为正也可为负,比如例子中的nums[0] = -2 < 0 ,所以当F(i-1) < 0 时,F(i) = nums[i],当F(i-1) > 0时,F(i) = F(i-1) + nums[i]
这样综合上述的1,2 我们可以得到以下状态转移过程:
F(i) = max(F(i-1)+nums[i],nums[i])
即,F(i-1)<0,F(i-1)+nums[i] < nums[i]
接下来我们需要一个存储容器dp,存储关于已经计算过的F(i-1),这也时dp思想的关键部分
需要对dp进行初始化,因为时求和,所以dp[0] = nums[0],且从 i = 1 开始遍历 nums
分析完毕,代码如下:
go语言实现:
func maxSubArray(nums []int) int {
//数组求子序列最值问题:
//F(i) = max(F(j)) + nums[i]
dp := make([]int,len(nums))
dp[0] = nums[0]
res := nums[0]
for i:=1;i<len(nums);i++ {
dp[i] = int(math.Max(float64(dp[i-1]+nums[i]),float64(nums[i])))
if dp[i] > res {
res = dp[i]
}
}
return res
}