1688.比赛中的配对次数-LeetCode

难度:简单

目录

一、问题描述

二、解题思想

三、解题

1、判断极端情况

2、代码实现

四、总结


一、问题描述

这里直接采用的是LeetCode上面的问题描述。

给你一个整数 n ,表示比赛中的队伍数。比赛遵循一种独特的赛制:

  • 如果当前队伍数是 偶数 ,那么每支队伍都会与另一支队伍配对。总共进行 n / 2 场比赛,且产生 n / 2 支队伍进入下一轮。
  • 如果当前队伍数为 奇数 ,那么将会随机轮空并晋级一支队伍,其余的队伍配对。总共进行 (n - 1) / 2 场比赛,且产生 (n - 1) / 2 + 1 支队伍进入下一轮。

返回在比赛中进行的配对次数,直到决出获胜队伍为止。

下面给出示例:

提示:

  • 1 <= n <= 200

二、解题思想

经典的比赛问题,根据题目给出的赛制可以计算:

  • 当比赛的人数是 偶数 时,那么会进行 n/2 场比赛,剩下 n/2个队伍。
  • 当比赛人数时 奇数 时,那么会进行 (n-1)/2 比赛,剩下(n-1)/2+1个队伍。

        进行循环,每次更新进行的比赛,更新剩下的队伍。最后累加每次进行的比赛即可,这里只要剩下的队伍不是 1 的话,那么就一直继续比赛。

测试数据比较多,发现规律了,还有一种更简单粗暴的方法即:

        只要 队伍 >= 1 那么,就一定要进行 队伍-1 场比赛,因此可以直接 return 队伍-1 即可。

三、解题

1、判断极端情况

        这一题没有什么极端情况,控制好循环停止的条件即可。

2、代码实现

class Solution {
public:
    int numberOfMatches(int n) {
        int ans = 0;
        while(n != 1){
            if(!(n%2)){
                n /=2 ;
                ans += n;
                continue;
            }
            if(n%2){
                ans += (n-1)/2;
                n = (n-1)/2 + 1;
                continue;
            }
        }
        return ans;
    }
};

 

也可以直接一点,简单粗暴

class Solution {
public:
    int numberOfMatches(int n) {
        return n-1;
};

 

四、总结

        简单来说,是一个数学问题。

        如果对你有什么帮助,请star ♥ 一下,收藏一下,蟹蟹啦!👇👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Alkaid_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值