素数筛法-代码及部分原理

本文介绍了两种埃拉托斯特尼筛法的C++实现,重点在于算法的优化。第一种算法筛去小于等于sqrt(n)的素数倍数;第二种算法进一步优化,避免重复筛去已知素数的倍数。通过分析证明了这两种算法的正确性,确保在求解素数过程中合数被正确筛除。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最简单的筛法代码(算法一)

void prime_filter(bool* is_prime, int n) {
	/* 求0~n之间的所有素数
	*  要求len(is_prime) > n
	*/
	memset(is_prime, 1, sizeof(is_prime));
	// 0,1是合数
	is_prime[0] = is_prime[1] = 0;

	// 根据合数必有<=sqrt(n)的素数因子使用筛法
	for (int i = 2; i <= sqrt(n); i++) {
		if (is_prime[i]) {
			// 筛去该素数i所有的倍数j
			for (int j = 2; j * i <= n; j++)
				is_prime[j * i] = false;
		}
	}
}
// 根据is_prime遍历即可得素数

基本原理就是合数n必有一个小于等于sqrt(n)的素因子,所以去除所有小于sqrt(n)的素数的倍数即可删除n以内的所有合数。

首先合数n肯定有一个小于等于sqrt(n)的因子(n=x*y),因为合数n必有因子但不可能x,y都大于sqrt(n)必有一个小于等于的,假如是x,再由算术基本定理有x必有素数因子,得证,合数n必有一个小于等于sqrt(n)的素因子。

还有一个需要证明的地方,因为is_prime全初始化为true,如何保证从已知一个素数k开始(因为2必为素数,然后数归即得),到下一个素数g之间的is_prime已被正确设置即合数被筛去。如下:

g和k之间的数m一定比g小的,那么可知m必有素因子,但这个素因子肯定是<=k的,而<=k的素数的倍数全被删去,故得证。

优化重复筛去(算法二)

int prime_faster(int* prime, bool* is_prime, int n) {
	/* 求0~n之间的所有素数,优化重复筛去的
	*  要求len(prime) > n,len(is_prime) > n
	*/
	// 素数的数量即当前素数待保存位置索引
	int prime_cnt = 0;
	memset(is_prime, 1, sizeof(is_prime));
	// 0,1是合数
	is_prime[0] = is_prime[1] = 0;

	// i既是筛去的倍数,也是待测试的素数
	for (int i = 2; i <= n; i++) {
		if (is_prime[i])
			prime[prime_cnt++] = i;
		// 筛去当前已找到的每个素数(下标为j)的i倍数
		for (int j = 0; j < prime_cnt && i * prime[j] <= n; j++) {
			is_prime[i * prime[j]] = false;
			// 如果i是prime[j]的倍数
			// 那么对于之后的i*prime[j+1],prime[j+2]来说
			// 比如i*prime[j+1] = prime[j]*k*prime[j+1],
			// 即可在之后更大的i(此时i=k*prime[j+1])对prime[j]的倍数来筛掉
			if (i % prime[j] == 0) break;
		}
	}
	return prime_cnt;
}

这里其实有两处优化,先说第一个。
下表是删去当前已知每个素数的倍数的具体循环(没考虑i%prime[j])

i=2i=3i= 4i=5i=6i=7
2*23*24*25*26*27*2
3*34*35*36*37*3
5*56*57*5
7*7

对比算法一,比如对于素数7,除了2,3,5倍被筛去,4,6倍从上表中可以看出并未被处理。观察得知比7小的素数倍数可以被处理,没处理全是小于7的合数,而这些合数是可以被比7小的素数所表示的,比如6*7=2*3*7,所以当i=21时,可被21倍2筛去。并且对于p*k*7(p*k为合数倍数,p为素数)而言,一定有k*7 >= 7,即一定会在之后被处理。

待证明:

  1. 如何证明已知的素数k,到下个素数g之间的is_prime一定被正确筛去,此时和算法一不同在于并不是已知的k及k之前的所有素数倍数都被筛去了。
<think>好的,我需要回答关于欧拉筛求解素数的问题。首先,我得回忆一下欧拉筛的基本原理和步骤。欧拉筛,也称为线性筛,是一种高效的生成素数算法,时间复杂度为O(n)。它的核心思想是确保每个合数只被其最小的质因数筛掉,这样每个合数只会被标记一次,从而避免了重复操作。 根据用户提供的引用资料,欧拉筛通过遍历每个数,并用已找到的素数去标记其倍数为合数。这里的关键在于,当当前数能被某个素数整除时,就停止继续标记更大的素数倍数,这样可以保证每个合数只被最小的质因数筛掉。例如,当处理到数字4时,已经用素数2筛掉了4,之后不再用更大的素数(比如3)去筛掉12,因为12会在处理6的时候被2筛掉。 接下来,我需要将这些步骤转化为中文解释,并确保所有数学表达式使用正确的LaTeX格式。例如,当提到素数素数得到合数时,应该写成$p \times q$,而筛的过程可以用类似$i \times prime[j]$的形式表达。 同时,我需要检查用户提供的代码示例是否符合欧拉筛的实现。代码中使用了数组`a`来标记合数,数组`prime`存储素数,当`i`是素数时(即`a[i] != 1`),将其加入素数列表。然后,对于每个`i`,无论是否为素数,都遍历已有的素数列表,标记`i * prime[j]`为合数,并在`i % prime[j] == 0`时跳出循环,避免重复标记。 在编写回答时,需要分步骤说明算法流程,确保每个步骤清晰易懂。例如,初始化标记数组,遍历每个数,判断是否为素数,标记倍数等步骤。此外,正确性证明和复杂度分析也是必要的部分,需要引用用户提供的资料中提到的时间复杂度为线性,并解释原因。 最后,生成相关问题时要围绕欧拉筛的核心概念、实现细节、优化方以及应用场景展开,确保问题具有针对性和延伸性,帮助用户深入理解。例如,可以询问为什么欧拉筛能保证线性复杂度,或者如何处理大数范围内的素数筛选。 整个过程中,要确保行内数学表达式使用$...$格式,独立公式如时间复杂度使用$$...$$,并且引用资料中的内容在适当的位置添加引用标识,如[^1][^2][^3][^4]。同时,保持语言简洁明了,结构清晰,符合用户的要求。</think>### 欧拉筛素数详解 欧拉筛(又称线性筛)是一种高效的素数筛算法,时间复杂度为$O(n)$。其核心思想是通过 **最小质因数** 标记合数,确保每个合数仅被标记一次。 #### 算法流程 1. **初始化** 创建两个数组: - `a[]`标记是否为合数(初始值为0,标记后为1) - `prime[]`存储已发现的素数 示例代码片段: ```c int a[MAXN] = {0}; // 合数标记数组 int prime[MAXN]; // 存储素数 int num = 0; // 素数计数 ``` 2. **遍历数字** 对每个数$i$(从2开始): - **判断素数**:若$a[i] = 0$,则$i$是素数,存入`prime[]` - **标记合数**:用已发现的素数$prime[j]$标记$i \times prime[j]$为合数 关键限制条件:当$i \bmod prime[j] = 0$时终止循环[^3] ```c for (int i = 2; i <= n; i++) { if (a[i] == 0) { prime[num++] = i; // 记录素数 } for (int j = 0; j < num && i * prime[j] <= n; j++) { a[i * prime[j]] = 1; // 标记合数 if (i % prime[j] == 0) break; // 终止条件 } } ``` #### 正确性证明 - **唯一标记**:每个合数$N$被其 **最小质因数** 标记。 设$N = p \times q$($p$为最小质因数),当遍历到$q$时,会通过$p$标记$N$ - **终止条件**:若$i \bmod prime[j] = 0$,说明后续更大的素数$prime[k]$($k > j$)与$i$相乘时,最小质因数应为$prime[j]$而非$prime[k]$,故终止循环避免重复标记[^4] #### 复杂度分析 - **线性时间复杂度**:每个合数仅被标记一次,总操作次数为$O(n)$ 对比埃氏筛的$O(n \log \log n)$,效率显著提升 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值