素数筛法-代码及部分原理

最简单的筛法代码(算法一)

void prime_filter(bool* is_prime, int n) {
	/* 求0~n之间的所有素数
	*  要求len(is_prime) > n
	*/
	memset(is_prime, 1, sizeof(is_prime));
	// 0,1是合数
	is_prime[0] = is_prime[1] = 0;

	// 根据合数必有<=sqrt(n)的素数因子使用筛法
	for (int i = 2; i <= sqrt(n); i++) {
		if (is_prime[i]) {
			// 筛去该素数i所有的倍数j
			for (int j = 2; j * i <= n; j++)
				is_prime[j * i] = false;
		}
	}
}
// 根据is_prime遍历即可得素数

基本原理就是合数n必有一个小于等于sqrt(n)的素因子,所以去除所有小于sqrt(n)的素数的倍数即可删除n以内的所有合数。

首先合数n肯定有一个小于等于sqrt(n)的因子(n=x*y),因为合数n必有因子但不可能x,y都大于sqrt(n)必有一个小于等于的,假如是x,再由算术基本定理有x必有素数因子,得证,合数n必有一个小于等于sqrt(n)的素因子。

还有一个需要证明的地方,因为is_prime全初始化为true,如何保证从已知一个素数k开始(因为2必为素数,然后数归即得),到下一个素数g之间的is_prime已被正确设置即合数被筛去。如下:

g和k之间的数m一定比g小的,那么可知m必有素因子,但这个素因子肯定是<=k的,而<=k的素数的倍数全被删去,故得证。

优化重复筛去(算法二)

int prime_faster(int* prime, bool* is_prime, int n) {
	/* 求0~n之间的所有素数,优化重复筛去的
	*  要求len(prime) > n,len(is_prime) > n
	*/
	// 素数的数量即当前素数待保存位置索引
	int prime_cnt = 0;
	memset(is_prime, 1, sizeof(is_prime));
	// 0,1是合数
	is_prime[0] = is_prime[1] = 0;

	// i既是筛去的倍数,也是待测试的素数
	for (int i = 2; i <= n; i++) {
		if (is_prime[i])
			prime[prime_cnt++] = i;
		// 筛去当前已找到的每个素数(下标为j)的i倍数
		for (int j = 0; j < prime_cnt && i * prime[j] <= n; j++) {
			is_prime[i * prime[j]] = false;
			// 如果i是prime[j]的倍数
			// 那么对于之后的i*prime[j+1],prime[j+2]来说
			// 比如i*prime[j+1] = prime[j]*k*prime[j+1],
			// 即可在之后更大的i(此时i=k*prime[j+1])对prime[j]的倍数来筛掉
			if (i % prime[j] == 0) break;
		}
	}
	return prime_cnt;
}

这里其实有两处优化,先说第一个。
下表是删去当前已知每个素数的倍数的具体循环(没考虑i%prime[j])

i=2i=3i= 4i=5i=6i=7
2*23*24*25*26*27*2
3*34*35*36*37*3
5*56*57*5
7*7

对比算法一,比如对于素数7,除了2,3,5倍被筛去,4,6倍从上表中可以看出并未被处理。观察得知比7小的素数倍数可以被处理,没处理全是小于7的合数,而这些合数是可以被比7小的素数所表示的,比如6*7=2*3*7,所以当i=21时,可被21倍2筛去。并且对于p*k*7(p*k为合数倍数,p为素数)而言,一定有k*7 >= 7,即一定会在之后被处理。

待证明:

  1. 如何证明已知的素数k,到下个素数g之间的is_prime一定被正确筛去,此时和算法一不同在于并不是已知的k及k之前的所有素数倍数都被筛去了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值