先上代码
int main()
{
int m, n, r;
cin >> m >> n;
while (n) {
r = m % n;
m = n;
n = r;
}
cout << m;
}
对于m = k*n + r来说(m > n),gcd算法依靠的是m,n的公约数数集合和n,r的公约数集合相同,故在r不断减小下,r最终会变为最大公约数此时的余数为0。
证:设m,n的公约数集合为F,设n,r的为G。此时g(属于G)一定能整除m,所以有G<=F。将
m=k*n+r
变形为m-k*n=r
,有f(属于F)一定能整除r,故F<=G。则得证F==G。
如果r比最大公约数大,是会不断缩小的,又每次必定会缩小至少1,对于有限数,则一定会缩小到最大公约数(必须满足公约数集合相同,r不会缩小到比最大公约数小不然矛盾)。
时间复杂度为O(logM)
因为M % N <= M/2,N如果<=M/2自不必说,N如果大于M/2那么M中只有一个N余数也小于M/2。所以复杂度为2*logM(应为要计算两次第一次的r才会移动到M的位置)。