前言
网上关于SQL优化的教程很多,但是比较杂乱。而且百度字节等大厂的面试难度越来越高,无论从大厂还是到小公司,一直未变的一个重点就是对SQL优化经验的考察。一提到数据库,先“说一说你对SQL优化的见解吧?”。SQL优化已经成为衡量程序猿优秀与否的硬性指标,甚至在各大厂招聘岗位职能上都有明码标注,所以近日有空我专门花费了大量的时间查找资料、修改、排版,希望能够帮助到有需要的朋友,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
有朋友疑问到,SQL优化真的有这么重要么?如下图所示,SQL优化在提升系统性能中是:(成本最低 && 优化效果最明显) 的途径。如果你的团队在SQL优化这方面搞得很优秀,对你们整个大型系统可用性方面无疑是一个质的跨越,真的能让你们老板省下不止几沓子钱。
- 优化成本:硬件>系统配置>数据库表结构>SQL及索引。
- 优化效果:硬件<系统配置<数据库表结构<SQL及索引。
String result = "嗯,不错,";
if ("SQL优化经验足") {
if ("熟悉事务锁") {
if ("并发场景处理666") {
if ("会打王者荣耀") {
result += "明天入职"
}
}
}
} else {
result += "先回去等消息吧";
}
Logger.info("面试官:" + result );
别看了,上面这是一道送命题。
好了我们言归正传,首先,对于MySQL层优化我一般遵从五个原则:
- 减少数据访问: 设置合理的字段类型,启用压缩,通过索引访问等减少磁盘IO
- 返回更少的数据: 只返回需要的字段和数据分页处理 减少磁盘io及网络io
- 减少交互次数: 批量DML操作,函数存储等减少数据连接次数
- 减少服务器CPU开销: 尽量减少数据库排序操作以及全表查询,减少cpu 内存占用
- 利用更多资源: 使用表分区,可以增加并行操作,更大限度利用cpu资源
总结到SQL优化中,就三点:
- 最大化利用索引;
- 尽可能避免全表扫描;
- 减少无效数据的查询;
理解SQL优化原理 ,首先要搞清楚SQL执行顺序:
SELECT语句 - 语法顺序:
1. SELECT
2. DISTINCT <select_list>
3. FROM <left_table>
4. <join_type> JOIN <right_table>
5. ON <join_condition>
6. WHERE <where_condition>
7. GROUP BY