能量采集 [Bzoj 2005,Noi2010]

题目地址请点击——


能量采集


【题目描述】

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。
在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。
栋栋的植物种得非常整齐,一共有 n 列,每列有 m 棵,植物的横竖间距都一样。
因此对于每一棵植物,栋栋可以用一个坐标 (x,y) 来表示。
其中 x 的范围是 1n,表示是在第 x 列, y 的范围是 1m,表示是在第 x 列的第 y 棵。
由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是 (0,0)
能量汇集机器在汇集的过程中有一定的能量损失。
如果一棵植物与能量汇集机器连接而成的线段上有 k 棵植物,则能量的损失为 2k+1
例如,当能量汇集机器收集坐标为 (2,4) 的植物时,由于连接线段上存在一棵植物 (1,2),会产生 3 的能量损失。
注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为 1
现在要计算总的能量损失。
下面给出了一个能量采集的例子,其中 n=5m=4,一共有 20 棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。

这里写图片描述

在这个例子中,总共产生了 36 的能量损失。


【输入描述】

仅包含一行,为两个整数 nm


【输出描述】

仅包含一个整数,表示总共产生的能量损失。


【样例输入 1】

5 4


【样例输出 1】

36


【样例输入 2】

3 4


【样例输出 2】

20


【数据规模和约定】

对于 10% 的数据:1n, m10

对于 50% 的数据:1n, m100

对于 80% 的数据:1n, m1000

对于 90% 的数据:1n, m10,000

对于 100% 的数据:1n, m100,000


【Solution】

f(d) 为满足 x<=ny<=mgcd(x,y)=d 的个数。

根据莫比乌斯反演公式,

f(d)=d|iμ(id)nimi

ans=i=1Min(n,m)f(i)i


【Code】

#include <iostream>
#include <cstdio>

#define LL long long
#define Max(x,y) ((x)>(y)?(x):(y))

using namespace std;

LL n,m,ans;
bool no_prime[100010];
LL prime[100010];
int miu[100010];

int main(){

    scanf("%lld%lld",&n,&m);
    if(n>m)swap(n,m);

    miu[1]=1;
    for(LL i=2;i<=m;i++){
        if(!no_prime[i]){
            prime[++prime[0]]=i;
            miu[i]=-1; 
        }
        for(LL j=1;prime[j]*i<=m;j++){
            no_prime[prime[j]*i]=true;
            if(i%prime[j]==0){
                miu[prime[j]*i]=0;
                break;
            }
            miu[prime[j]*i]=-miu[i];
        }
    }

    for(LL i=1;i<=m;i++){
        LL tmp=0;
        while(1){
            tmp++;
            LL rk=tmp*i,sum=0;
            if(rk>n)break;
            sum+=(n/rk)*(m/rk);
            ans=ans+miu[tmp]*sum*i;
        }
    }
    printf("%lld\n",2*ans-m*n);

    return 0;
}
发布了193 篇原创文章 · 获赞 160 · 访问量 9万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览