UVA - 11426 GCD - Extreme (II)

 

思路:

我们令f(n) = gcd(1, n) + gcd(2, n) + ... + gcd(n-1, n)

则对应的结果s(n) = f(2) + f(3) + ... + f(n)

所以s(n) = s(n-1)+f(n)

因此我们只需求出所有的f(n),在递推即可

取g(n, i)表示小于n且与n的gcd值等于i的数x的个数(gcd(n, x) = i)

则f(n) = 1*gcd(n, 1) + 2*gcd(n ,2) + ... 

而gcd(n, x) = i即gcd(n/i, x/i) = 1

所以g(n, i) == phi(n/i)

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxx=4000001;
int e[4000010];//Euler
ll f[4000010];
ll sum[4000010];
void Euler(int n)//欧拉函数打表
{
    memset(e,0,sizeof(e));
    e[1]=1;//1的欧拉值为1
    for(int i=2; i<=n; i++)
    {
        if(!e[i])
        {
            for(int j=i; j<=n; j+=i)//j为i的倍数且i为素数
            {
                if(!e[j])
                    e[j]=j;
                e[j]=e[j]/i*(i-1);//欧拉函数公式
            }
        }
    }
}
void solve()
{
    Euler(maxx);
    memset(f,0,sizeof(f));
    memset(sum,0,sizeof(sum));
    for(int i=1; i<=maxx; i++)
    {
        for(int j=i*2; j<=maxx; j+=i)
            f[j]+=(ll)(e[j/i]*i);
    }
    
    sum[2]=f[2];
    for(int i=3; i<=maxx; i++)
        sum[i]=sum[i-1]+f[i];
}
int main()
{
    int n;
    solve();
    while(scanf("%d",&n)&&n)
    {
        printf("%lld\n",sum[n]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值