思路:
我们令f(n) = gcd(1, n) + gcd(2, n) + ... + gcd(n-1, n)
则对应的结果s(n) = f(2) + f(3) + ... + f(n)
所以s(n) = s(n-1)+f(n)
因此我们只需求出所有的f(n),在递推即可
取g(n, i)表示小于n且与n的gcd值等于i的数x的个数(gcd(n, x) = i)
则f(n) = 1*gcd(n, 1) + 2*gcd(n ,2) + ...
而gcd(n, x) = i即gcd(n/i, x/i) = 1
所以g(n, i) == phi(n/i)
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxx=4000001;
int e[4000010];//Euler
ll f[4000010];
ll sum[4000010];
void Euler(int n)//欧拉函数打表
{
memset(e,0,sizeof(e));
e[1]=1;//1的欧拉值为1
for(int i=2; i<=n; i++)
{
if(!e[i])
{
for(int j=i; j<=n; j+=i)//j为i的倍数且i为素数
{
if(!e[j])
e[j]=j;
e[j]=e[j]/i*(i-1);//欧拉函数公式
}
}
}
}
void solve()
{
Euler(maxx);
memset(f,0,sizeof(f));
memset(sum,0,sizeof(sum));
for(int i=1; i<=maxx; i++)
{
for(int j=i*2; j<=maxx; j+=i)
f[j]+=(ll)(e[j/i]*i);
}
sum[2]=f[2];
for(int i=3; i<=maxx; i++)
sum[i]=sum[i-1]+f[i];
}
int main()
{
int n;
solve();
while(scanf("%d",&n)&&n)
{
printf("%lld\n",sum[n]);
}
return 0;
}