给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。
示例 1:
输入: [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:
输入: [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-product-subarray
解法一:
根据负号的个数进行乘积。当负号个数为偶数时,那么所有数相乘则为最大乘积;当负号个数为奇数时,那么第一个负号的左右两边的负号个数为0个和偶数个,最后一个负号的左右两边负号个数为0个和偶数个。当遇到0则重置,相当于子数组,该子数组规律与上述一样。
class Solution {
public:
int maxProduct(vector<int>& nums) {
int len = nums.size();
if (len == 1)
return nums[0];
int ans = nums[0];
int pre = 1;
int post = 1;
for (int i = 0; i < len; i++)
{
pre *= nums[i];
post *= nums[len - 1 - i];
ans = max(ans, max(pre, post));
if (pre == 0)
pre = 1;
if (post == 0)
post = 1;
}
return ans;
}
};
解法二:
动态规划。dp_max[i]表示当i元素为子数组最后一个时,乘积最大为dp_max[i]。状态转移方程为dp_max[i]=max(dp_max[i-1]*nums[i], nums[i]),但当出现偶数个负数时,该状态不是局部最优的。此时第i个状态可能由第i-1个最小乘积得到。那么同时需要维护dp_min[i]表示第i个元素为子数组最后一个时, 乘积最小为dp_min[i]。由于状态i只用到状态i-1,所以用滚动数组优化。
class Solution {
public:
int maxProduct(vector<int>& nums) {
int len = nums.size();
if (len == 1)
return nums[0];
int ans = nums[0];
int dp_max = nums[0];
int dp_min = nums[0];
for (int i = 1; i < len; i++)
{
int t_max = max(dp_max*nums[i], max(dp_min*nums[i], nums[i]));
int t_min = min(dp_max*nums[i], min(dp_min*nums[i], nums[i]));
dp_max = t_max;
dp_min = t_min;
ans = max(ans, max(dp_max, dp_min));
}
return ans;
}
};