LeetCode 152. 乘积最大子数组

这篇博客介绍了如何解决寻找数组中乘积最大子数组的问题。提供了两种解法,一是根据负数个数调整乘积,二是使用动态规划。动态规划解法中,维护了两个状态dp_max和dp_min,分别表示以当前元素结束的最大乘积和最小乘积,从而找到全局最大乘积。
摘要由CSDN通过智能技术生成

给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

示例 1:

输入: [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:

输入: [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-product-subarray
 

解法一:

根据负号的个数进行乘积。当负号个数为偶数时,那么所有数相乘则为最大乘积;当负号个数为奇数时,那么第一个负号的左右两边的负号个数为0个和偶数个,最后一个负号的左右两边负号个数为0个和偶数个。当遇到0则重置,相当于子数组,该子数组规律与上述一样。

class Solution {
public:
	int maxProduct(vector<int>& nums) {
		int len = nums.size();
		if (len == 1)
			return nums[0];
		int ans = nums[0];
		int pre = 1;
		int post = 1;
		for (int i = 0; i < len; i++)
		{
			pre *= nums[i];
			post *= nums[len - 1 - i];
			ans = max(ans, max(pre, post));
			if (pre == 0)
				pre = 1;
			if (post == 0)
				post = 1;
		}
		return ans;
	}
};

解法二:

动态规划。dp_max[i]表示当i元素为子数组最后一个时,乘积最大为dp_max[i]。状态转移方程为dp_max[i]=max(dp_max[i-1]*nums[i], nums[i]),但当出现偶数个负数时,该状态不是局部最优的。此时第i个状态可能由第i-1个最小乘积得到。那么同时需要维护dp_min[i]表示第i个元素为子数组最后一个时, 乘积最小为dp_min[i]。由于状态i只用到状态i-1,所以用滚动数组优化。

class Solution {
public:
	int maxProduct(vector<int>& nums) {
		int len = nums.size();
		if (len == 1)
			return nums[0];
		int ans = nums[0];
		int dp_max = nums[0];
		int dp_min = nums[0];
		for (int i = 1; i < len; i++)
		{
			int t_max = max(dp_max*nums[i], max(dp_min*nums[i], nums[i]));
			int t_min = min(dp_max*nums[i], min(dp_min*nums[i], nums[i]));
			dp_max = t_max;
			dp_min = t_min;
			ans = max(ans, max(dp_max, dp_min));
		}
		return ans;
	}
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值