2022年暑假第一场多校 I:Chiitoitsu

该博客探讨了一种麻将游戏策略问题,玩家初始手牌含有13张牌,目标是通过最优策略形成七对子并计算达成此目标的期望轮数。文章介绍了动态规划和概率计算的方法来解决这一问题,并给出了AC代码实现。通过预处理不同初始单牌数量的情况,得出在不同起始手牌状态下达到七对子的期望轮数。
摘要由CSDN通过智能技术生成

题意:

1.初始手牌有 13 张麻将牌,相同牌至多出现 2 张

2.所有的牌有34种,每种牌都有4张

3.每轮可以从牌堆摸牌,若达成七对子则自摸胡牌

4.如果没有达成七对子则选择手牌中某张牌并丢弃(包含本轮摸到的牌)

5.给定初始手牌,求最优策略下达成七对子的期望轮数(输出mod 1e9 + 7)

6.多组数据,数据组数不超过 1e5 组

题目分析:

本题求数学期望,考虑使用 d p dp dp思想解决:

1.我们设 d p [ i ] [ j ] dp[i][j] dp[i][j]表示摸了 i i i张牌后还剩下j张没凑成对子的牌;

2.本题要求最优策略,又由于初始手牌中相同的牌不会超过两张,所以我们进行贪心及:如果摸到的牌不能和手牌中的单牌组成对子,则会丢掉新进的牌,否则随机丢一张手中的单牌

所以我们每次摸牌时会出现两种情况:

1.摸到的牌可以和手牌中的单牌组成对子,此事件发生的概率就是 3 j 124 − i \frac{3j}{124 - i} 124i3j(第 i i i次摸牌时手上有 j j j张单牌)

2.摸到的牌不可以和手牌中的单牌组成对子,此事件发生的概率就是 124 − i − 3 j 124 − i \frac{124 - i - 3j}{124 - i} 124i124i3j

(注:由于初始时有13张牌,所以剩下123张牌,所以第 i i i次摸牌时还有 124 − i 124 - i 124i 张牌,我们一直进行最优操作所以手中单牌在剩下的牌中还有 $3j $ 张,不是手中的单牌的数量 124 − i − 3 j 124 - i - 3j 124i3j

根据以上分析我们的得到状态转移方程:
在这里插入图片描述
(注:加号前表示第 i i i次摸的牌不能构成对子的所有概率,及摸 i − 1 i - 1 i1次牌后还剩 j j j张单牌的概率乘第 i i i次摸牌不能构成对子的概率;加号后边表示第 i i i次摸的牌能构成对子的所有概率,及摸 i − 1 i - 1 i1次牌后还剩 j + 2 j + 2 j+2(因为匹配成功后会少两张单牌)张单牌的概率乘第 i i i次摸牌能构成对子的概率)

由于我们方程求得时概率我们最终要知道期望:

根据数学期望的公式最终答案就是 :
在这里插入图片描述

(注: i i i次结束的概率就是 i − 1 i - 1 i1次摸牌后剩下1张单牌的概率乘上第 i i i次摸牌可以组成对子的概率)

最后预处理求出初始手牌有(1~13)张单牌的所有情况(手上只会有奇数张单牌)

AC代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 200 + 10, mod = 1e9 + 7;

ll dp[N][N], ans[N], op[N];

ll qmi(ll x, ll k)
{
	ll res = 1;
	while (k)
	{
		if(k & 1) res = res * x % mod;
		x = x * x % mod;
		k >>= 1;
	}
	return res % mod;
}

map<string, int> mp;


int main(void)
{

	for (int k = 1; k <= 13; k += 2)//初始手牌中的单牌数量
	{
		memset(dp, 0, sizeof(dp));
		dp[0][k] = 1;//初始化第0次摸牌手牌中单牌数量为k的概率为1

		for (int i = 1; i <= 121; ++i)//最多摸121次一定会胡牌
			for (int j = 1; j <= 13; j += 2)
			{
				dp[i][j] = (((dp[i - 1][j + 2] * (j + 2) * 3) % mod + (dp[i - 1][j] * (124 - i - j * 3)) % mod) * qmi(124 - i, mod - 2)) % mod;//转移方程记得求逆元
			}

		ll res = 0;
		for (int i = 1; i <= 121; ++i)
			res = (res + (i * dp[i - 1][1] * 3) % mod * qmi(124 - i, mod - 2) % mod) % mod;//求期望
		ans[k] = res;//ans[k]表示初始手上有k张单牌最终获胜的期望轮数
	}

	int t; cin >> t;
	int res = 0;
	while (t--)
	{
		string s;
		cin >> s;
		mp.clear();
		int cnt = 13;
		for (int i = 0; i < s.size(); i += 2)
		{
			string c = s.substr(i, 2);
			mp[c]++;
			if (mp[c] == 2) cnt -= 2;
		}
		cout << "Case #" << ++res << ": " << ans[cnt] << endl;
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值