[洛谷 P1450 HAOI2008] 硬币购物 (背包+容斥)

P1450 [HAOI2008]硬币购物


题目大意:

首先给出四种不同面值的硬币 第i种硬币的面值为c_i, n次询问,每次询问输入4种面值硬币的数量d_i,和需要购买的物品价值s,求有多少种付款方式 


题目分析:

本题如果单纯使用多重背包来做 是O(n * logd * s)的复杂度会超时

如果本题改成硬币没有数量限制,我们就可以直接利用完全背包跑出来复杂度为O(4*s) ,但是现在有限制这样跑出来会有不合法情况,所有就有这样一个思路就是 用总方案呢数量-不合法方案数量 就是合法的方案数量,现在假如有一种方案的我们最少用d_1+1个硬币 那么该方案数其实就是f[s-(d_1+1)*c_1] 这就是不合法的方案数因为第一个硬币一定超过了限制,现在再复杂一些比如有3种硬币都超过限制 如果我们把三种超出限制的方案逐一减去,这是就可能会减重(即同时两个硬币有限制的情况减了两次)所以这里就需要使用容斥原理了

容斥原理:A∪B∪C = A+B+C  –  A∩B  – B∩C – C∩A  + A∩B∩C(奇加偶减)

因为只有四种硬币直接把所有超过限制的方案枚举一下就可以了(只有16种情况,例如:第1个硬币超限,第1,2个硬币超限,第1,3,4个硬币超限)这里可以用4位的二进制来表示状态

这样复杂度就可以将为O(4s+2^6n)


  下边模型截取自:1E6 的 [洛谷 P1450 HAOI2008] 硬币购物 (容斥应用好题)


AC代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
ll c[5], d[5];
ll f[N];//f[i]表示容量是i的总方案数(包括不合法的)
int main(void)
{
	int n,s;
	for (int i = 1; i <= 4; i++) cin >> c[i];

	//完全背包 直接预处理除所有方案数
	f[0] = 1;
	for (int i = 1; i <= 4; i++)
		for (int j = c[i]; j < N; j++)
			f[j] += f[j - c[i]];

	cin >> n;
	while (n--)
	{
		for (int i = 1; i <= 4; i++) cin >> d[i];
		cin >> s;
		//下边枚举15种不合法情况 0000~1111
		//0001表示第一个硬币不合法 1010表示第四和第二个硬币不合法
		ll res = 0;//不合法的数量
		for (int i = 1; i <= 15; i++)
		{
			ll sum = s, cnt = 0;//cnt表示不合法的硬币个数
			for (int j = 0; j < 4; j++)
			{
				//判断第i种情况的第j+1个硬币是否合法
				if (i & (1 << j))
				{
					cnt++;
					sum -= (d[j + 1] + 1) * c[j + 1];//减去超过限制的硬币的价值
				}
			}

			//容斥定理 奇加偶减
			if (sum >= 0) res += (cnt % 2 * 2 - 1) * f[sum];
		}

		cout << f[s] - res << endl;//总数-不合法数
	}
	return 0;
}

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
这道题目还可以使用树状数组或线段树来实现,时间复杂度也为 $\mathcal{O}(n\log n)$。这里给出使用树状数组的实现代码。 解题思路: 1. 读入数据; 2. 将原数列离散化,得到一个新的数列 b; 3. 从右往左依次将 b 数列中的元素插入到树状数组中,并计算逆序对数; 4. 输出逆序对数。 代码实现: ```c++ #include <cstdio> #include <cstdlib> #include <algorithm> const int MAXN = 500005; struct Node { int val, id; bool operator<(const Node& other) const { return val < other.val; } } nodes[MAXN]; int n, a[MAXN], b[MAXN], c[MAXN]; long long ans; inline int lowbit(int x) { return x & (-x); } void update(int x, int val) { for (int i = x; i <= n; i += lowbit(i)) { c[i] += val; } } int query(int x) { int res = 0; for (int i = x; i > 0; i -= lowbit(i)) { res += c[i]; } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); nodes[i] = {a[i], i}; } std::sort(nodes + 1, nodes + n + 1); int cnt = 0; for (int i = 1; i <= n; ++i) { if (i == 1 || nodes[i].val != nodes[i - 1].val) { ++cnt; } b[nodes[i].id] = cnt; } for (int i = n; i >= 1; --i) { ans += query(b[i] - 1); update(b[i], 1); } printf("%lld\n", ans); return 0; } ``` 注意事项: - 在对原数列进行离散化时,需要记录每个元素在原数列中的位置,便于后面计算逆序对数; - 设树状数组的大小为 $n$,则树状数组中的下标从 $1$ 到 $n$,而不是从 $0$ 到 $n-1$; - 在计算逆序对数时,需要查询离散化后的数列中比当前元素小的元素个数,即查询 $b_i-1$ 位置上的值; - 在插入元素时,需要将离散化后的数列的元素从右往左依次插入树状数组中,而不是从左往右。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值