题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为s,求s所有可能取值的概率。
分析:i个骰子的点数之和最少为i最多为6i,用数组dp[i][j]表示i个骰子的点数之和为j出现的组合数
其中\(1\leq i \leq n\), \(i\leq j\leq 6i\)。
则
$$dp[i][j] = \sum_{k=1,\cdots, 6, i-1\leq j - k\leq 6(i - 1)}dp[i - 1][j - k]$$
则点数j出现的概率为\(\frac{dp[n][j]}{6^n},n\leq j\leq 6n\)
初始条件为
$$dp[1][i] = 1,i = 1,\cdots,6$$
c++实现
#include<vector>
#include<iostream>
#include<cmath>
using namespace std;
void print_p(int n)
{
vector<vector<int>> dp(n + 1, vector<int>(6 * n + 1, 0));
for (int i = 0; i<=6; i++)
dp[1][i] = 1;
int max_count = pow(6, n);
for (int i = 2; i <= 6; i++)
for (int j = i; j <= 6 * i; j++)
{
for (int k = 1; k <= 6; k++)
{
if (j - k >= i - 1 && j - k <= 6 * (i - 1))
dp[i][j] = dp[i][j] + dp[i - 1][j - k];
}
}
for (int j = n; j <= 6 * n; j++)
{
cout << j << ':'<<(double)dp[n][j] / (double)max_count << endl;
}
}
int main()
{
int n;
while (cin >> n)
{
print_p(n);
}
return 0;
}