n个骰子的点数

题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为s,求s所有可能取值的概率。

分析:i个骰子的点数之和最少为i最多为6i,用数组dp[i][j]表示i个骰子的点数之和为j出现的组合数

其中\(1\leq i \leq n\), \(i\leq j\leq 6i\)。

$$dp[i][j] = \sum_{k=1,\cdots, 6, i-1\leq j - k\leq 6(i - 1)}dp[i - 1][j - k]$$

则点数j出现的概率为\(\frac{dp[n][j]}{6^n},n\leq j\leq 6n\)

初始条件为

$$dp[1][i] = 1,i = 1,\cdots,6$$

c++实现

#include<vector>
#include<iostream>
#include<cmath>
using namespace std;

void print_p(int n)
{
	vector<vector<int>> dp(n + 1, vector<int>(6 * n + 1, 0));
	for (int i = 0; i<=6; i++)
		dp[1][i] = 1;
	int max_count = pow(6, n);
	for (int i = 2; i <= 6; i++)
	for (int j = i; j <= 6 * i; j++)
	{
		for (int k = 1; k <= 6; k++)
		{
			if (j - k >= i - 1 && j - k <= 6 * (i - 1))
				dp[i][j] = dp[i][j] + dp[i - 1][j - k];
		}

	}
	for (int j = n; j <= 6 * n; j++)
	{
		cout << j << ':'<<(double)dp[n][j] / (double)max_count << endl;
	}

}
int main()
{
	int n;
	while (cin >> n)
	{
		print_p(n);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值