奇偶函数的性质

g(x)为偶函数,h(x)为奇函数,那么有:

① g(x)=f(x)+f(-x) 

② h(x)=f(x)-f(-x)

由①式+②式得出:

f(x)=1/2 * ( g(x)+h(x) )

于是有:

\int_{-a}^{a} f(x) dx = \int_{-a}^{a} \frac{1}{2}(g(x)+h(x))dx = \int_{0}^{a}g(x)dx+0 = \int_{0}^{a}g(x)dx = \int_{0}^{a}[f(x)+f(-x)]dx

例题:

求  \int_{-1}^{1}\frac{1}{1+e^{\frac{1}{x}}}dx 的值

解:

\int_{-1}^{1}\frac{1}{1+e^{\frac{1}{x}}}dx = \int_{0}^{1}[\frac{1}{1+e^{\frac{1}{x}}}+\frac{1}{1+e^{-\frac{1}{x}}}]dx = \int_{0}^{1}[\frac{1}{1+e^{\frac{1}{x}}}+\frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}}+1}]dx = \int_{0}^{1}1dx=1

### 函数偶性的数学公式、定义与性质 #### 奇函数的定义 对于一个实数范围内的函数 \( f(x) \),如果满足条件: \[ f(-x) = -f(x),\quad \forall x \in D_f \] 其中 \(D_f\) 表示函数\(f(x)\) 的定义域,则该函数被称为奇函数[^1]。 #### 偶函数的定义 同样地,对于一个实数范围内定义的函数 \( g(x) \),如果有如下关系成立: \[ g(-x) = g(x),\quad \forall x \in D_g \] 这里 \(D_g\) 是指函数 \(g(x)\) 的定义域;这样的函数被定义为偶函数。 #### 判断方法 为了验证给定函数是否具有偶特性,通常会遵循以下流程: - 验证函数定义域是否关于原点对称; - 使用上述两个基本公式的任意一条来进行检验。 值得注意的是,在实际操作过程中可能还需要运用到一些代数技巧比如因式分解等辅助手段来简化表达形式以便更容易看出其偶属性。 #### 复合函数中的偶性规律 当涉及到复合函数时,“内偶则偶,内同外”的原则可以帮助快速判定最终结果的偶特征。“内偶则偶”意味着只要内部存在至少一个是偶函数的话,不论外面是什么样的情况组合而成的新函数一定是偶函数;而“内同外”,即当所有的组成部分都是由奇函数构成的时候,整体表现出来的偶性和最外层的那个函数一致[^2]。 ```python def is_odd_or_even(f, x_values): """ Check if function f is odd or even based on given set of x values. Args: f (function): The target mathematical function to check. x_values (list): A list containing positive and negative test points. Returns: str: Description about the nature ('odd', 'even' or 'neither') of inputted function. """ results = [] for x in x_values: try: fx = f(x) fneg_x = f(-x) if abs(fx + fneg_x) < 1e-9: # Considering floating point precision issues results.append('odd') elif abs(fx - fneg_x) < 1e-9: results.append('even') else: return 'neither' except Exception as e: print(e) continue result_set = set(results) if len(result_set) == 1: return next(iter(result_set)) else: return 'neither' # Example usage with a simple polynomial function defined below this line import numpy as np def example_function(x): return np.power(x, 3) - 5 * x print(is_odd_or_even(example_function, [-10, -5, -1, 0, 1, 5, 10])) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值