complex variable z ,
Jacobian Matrix
For analytic functions , they satisfy Cauchy-Riemann Relations
Both u and v are separately solutions of Laplace’s equation in two dimensions, i.e.
The gradients of u and v are orthogonal
complex variable z ,
Jacobian Matrix
For analytic functions , they satisfy Cauchy-Riemann Relations
Both u and v are separately solutions of Laplace’s equation in two dimensions, i.e.
The gradients of u and v are orthogonal