leetCode_Scramble String

题意:我觉得中文说不清楚了,英文题照抄了~

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
   /    \
  gr    eat
 / \    /  \
g   r  e   at
           / \
          a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
   /    \
  rg    eat
 / \    /  \
r   g  e   at
           / \
          a   t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
   /    \
  rg    tae
 / \    /  \
r   g  ta  e
       / \
      t   a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

思路:其实像这种很复杂的 感觉从上往下走走不出来的,要立刻想到用自顶向上的动态规划求解。用s[len][i][j]表示从s1[i]和s2[j]开始,len个字符能不能互换的条件也很简单:从1到len-1把s1和s2分成两段,要么是s1前面和s2前面、s1后面和s2后面能匹配的上,要么就相反。

代码如下:

class Solution {
public:
    bool isScramble(string s1, string s2) {
        if(s1.length()!=s2.length()) return false;
        if(s1.length()==0) return true;
        if(s1.length()==1) return s1==s2;
        int i,j,k,l,t,len=s1.length();
        vector<vector<vector<bool>>> s(len+2,vector<vector<bool>>(len+2,vector<bool>(len+2,false)));
        for(i=0;i<len;i++)
        {
            for(j=0;j<len;j++)
            {
                s[1][i][j]=(s1[i]==s2[j]);
            }
        }
        for(l=2;l<=len;l++)
        {
            for(i=0;i<len-l+1;i++)
            {
                for(j=0;j<len-l+1;j++)
                {
                    for(k=1;k<l;k++)
                    {
                        if(s[k][i][j]&&s[l-k][i+k][j+k]||s[k][i][j+l-k]&&s[l-k][i+k][j])
                        {
                            s[l][i][j]=true;
                            break;
                        }
                    }
                }
            }
        }
        return s[len][0][0];
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值