深度学习论文汇总

  宣传一波个人博客 https://hongbb.top,大家有空去玩玩23333333

  “读万卷书,行万里路”,深度学习领域每时每刻都在萌生新的灵感和想法。要成为这方面的大牛,我想理论知识、代码功底都得多多锻炼。我们不仅仅要对某一个方向深入了解,更要对CV这个领域有一个全面的认识。所以,读paper肯定是不能少的啦,从ImageNet比赛,到目标检测、图像分割,都有许多许多优秀的论文。这篇博客整理出一些优秀深度学习论文,也是对自己学习过程的一些记录吧,不断地学习state-of-the-art论文中的最新思想,这样才能跟得上时代的步伐吧~

深度学习大爆发:ImageNet 挑战赛

  ImageNet 挑战赛属于深度学习最基础的任务:分类。从最早最早的LeNet,到后来的GoogleNet,再到现在的Shufflenet,涌现了一大批优秀的卷积神经网络框架。这些框架也被广泛用于目标检测等更复杂的深度学习任务中作为backbone,用来提取图像的特征。各种state-of-the-art的CNN框架,也是我们首要学习的知识。

  • (LeNet) Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document recognition,” in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.[PDF] ,CNN的开山之作,也是手写体识别经典论文
  • (AlexNet) Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems. 2012 [PDF]ILSVRC-2012冠军,CNN历史上的转折,也是深度学习第一次在图像识别的任务上超过了SVM等传统的机器学习方法
  • (VGG) Simonyan, Karen, and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).[PDF] 使用了大量的重复卷积层,对后面的网络产生了重要影响
  • (GoogLeNet) Szegedy, Christian, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [PDF] 提出Inception模块,第一次在CNN中使用并行结构,后来的ResNet等都借鉴了该思想,CNN不再是一条路走到底的网络结构了
  • (InceptionV2、InceptionV3) Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[J]. Computer Science, 2015:2818-2826.[PDF]由于BN(Batch Normalization)等提出,改进了原始GoogLeNet中的Inception模块
  • (ResNet) He, Kaiming, et al. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015).[PDF] 提出残差结构,解决了深度学习网络层数太深梯度消失等问题,ResNet当时的层数达到了101层。
  • (Xception) Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions[J]. arXiv preprint arXiv:1610.02357, 2016.[PDF]
  • (DenseNet) Huang G, Liu Z, Weinberger K Q, et al. Densely Connected Convolutional Networks[J]. 2016. [PDF] 将shortcut思想发挥到极致
  • (SeNet) Squeeze-and-Excitation Networks. [PDF] 主打融合通道间的信息(channel-wise),并且只增加微量计算
  • (MobileNet v1) Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017. [PDF]
  • (Shufflenet) Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[J]. [PDF] 使用shuffle操作来代替1x1卷积,实现通道信息融合,大大减小了参数量,主要面向一些计算能力不足的移动设备。
  • (capsules) Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C][PDF]
  • (Partial Labels) Durand, Thibaut, Nazanin Mehrasa and Greg Mori. “Learning a Deep ConvNet for Multi-label Classification with Partial Labels.” CoRR abs/1902.09720 (2019): n. pag.[PDF] 多标签分类
  • (Res2Net) Gao, Shang-Hua, Ming-Ming Cheng, Kai Zhao, Xin-yu Zhang, Ming-Hsuan Yang and Philip H. S. Torr. “Res2Net: A New Multi-scale Backbone Architecture.” (2019). [PDF]
  • (Residual Attention Network) Wang, F., Jiang, M., Qian, C., Yang, S., Li, C.C., Zhang, H., Wang, X., & Tang, X. (2017). Residual Attention Network for Image Classification. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6450-6458.[PDF]
  • (Deformable CNN) Dai, Jifeng et al. “Deformable Convolutional Networks.” 2017 IEEE International Conference on Computer Vision (ICCV) (2017): 764-773.[PDF]
  • (GCNet) Cao, Yue et al. “GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond.” CoRR abs/1904.11492 (2019): n. pag.[PDF]
  • (NASNet) Zoph, B., Vasudevan, V., Shlens, J., & Le, Q.V. (2018). Learning Transferable Architectures for Scalable Image Recognition. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8697-8710.[PDF]

物体检测

  深度学习另外一个重要的任务就是物体检测,在1990年以前,典型的物体检测方法是基于 geometric representations,之后物体检测的方法像统计分类的方向发展(神经网络、SVM、Adaboost等)。
  2012年当深度神经网络(DCNN)在图像分类上取得了突破性进展时,这个巨大的成功也被用到了物体检测上。Girshick提出了里程碑式的物体检测模型Region based CNN(RCNN),在此之后物体检测领域飞速发展、并且提出了许多基于深度学习的方法,如YOLO、SSD等…

  • (R-CNN) Girshick, Ross, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.[PDF] 里程碑式的物体检测框架,RCNN系列的开山鼻祖,后续深度学习的物体检测都借鉴了思想,不得不读的paper
  • (SPPNet) He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//European Conference on Computer Vision. Springer International Publishing, 2014: 346-361.[PDF] 主要改进了R-CNN中计算过慢重复提取特征的问题
  • (Fast R-CNN) Girshick R. Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 1440-1448.[PDF] RCNN系列的第二版,提出RoI Pooling,同时改进了 R-CNN 和 SPPNet,同时提高了速度和精度
  • (Faster R-CNN) Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]//Advances in neural information processing systems. 2015: 91-99.[PDF] R-CNN系列巅峰,提出了anchor、RPN等方法,广泛被后续网络采用。
  • (YOLO) Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.[PDF] One-Stage目标检测框架代表之一,速度非常快,不过精度不如R-CNN系列
  • (SSD) Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision. Springer International Publishing, 2016: 21-37.[PDF] One-Stage目标检测框架代表之二,提高速度的同时又不降低精度
  • (R-FCN) Li Y, He K, Sun J. R-fcn: Object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems. 2016: 379-387.[PDF]
  • (DSSD) Fu, C., Liu, W., Ranga, A., Tyagi, A., & Berg, A.C. (2017). DSSD : Deconvolutional Single Shot Detector. CoRR, abs/1701.06659.[PDF] 和FPN的思想有类似,采用deconvolution,进行了特征融合,提高了SSD在小物体,重叠物体上的检测精度
  • (FPN) T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, “Feature Pyramid Networks for Object Detection,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017 [PDF] 提出特征图金字塔,让卷积神经网络中深层中提取的语义信息融合到每一层的特征图中(特别是底层的高分辨率特征图也能获得高层的语义信息),提高特征图多尺度的表达,提高了一些小目标的识别精度,在图像分割和物体监测中都可用到。
  • (RetinaNet) Lin, T., Goyal, P., Girshick, R.B., He, K., & Dollár, P. (2017). Focal Loss for Dense Object Detection. 2017 IEEE International Conference on Computer Vision (ICCV), 2999-3007.[PDF] 提出了FocalLoss 解决物体检测中负类样本过多,类别不平衡的问题
  • (TDM) Shrivastava, Abhinav, Rahul Sukthankar, Jitendra Malik and Abhinav Gupta. “Beyond Skip Connections: Top-Down Modulation for Object Detection.” CoRR abs/1612.06851 (2016): n. pag.[PDF] 和FPN思想类似,不过文中提出的方法是一层一层的添加top-down模块
  • (YOLO-v2) Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, Faster, Stron
  • 8
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
大学生参加学科竞赛有着诸多好处,不仅有助于个人综合素质的提升,还能为未来职业发展奠定良好基础。以下是一些分析: 首先,学科竞赛是提高专业知识和技能水平的有效途径。通过参与竞赛,学生不仅能够深入学习相关专业知识,还能够接触到最新的科研成果和技术发展趋势。这有助于拓展学生的学科视野,使其对专业领域有更深刻的理解。在竞赛过程中,学生通常需要解决实际问题,这锻炼了他们独立思考和解决问题的能力。 其次,学科竞赛培养了学生的团队合作精神。许多竞赛项目需要团队协作来完成,这促使学生学会有效地与他人合作、协调分工。在团队合作中,学生们能够学到如何有效沟通、共同制定目标和分工合作,这对于日后进入职场具有重要意义。 此外,学科竞赛是提高学生综合能力的一种途径。竞赛项目通常会涉及到理论知识、实际操作和创新思维等多个方面,要求参赛者具备全面的素质。在竞赛过程中,学生不仅需要展现自己的专业知识,还需要具备创新意识和解决问题的能力。这种全面的综合能力培养对于未来从事各类职业都具有积极作用。 此外,学科竞赛可以为学生提供展示自我、树立信心的机会。通过比赛的舞台,学生有机会展现自己在专业领域的优势,得到他人的认可和赞誉。这对于培养学生的自信心和自我价值感非常重要,有助于他们更加积极主动地投入学习和未来的职业生涯。 最后,学科竞赛对于个人职业发展具有积极的助推作用。在竞赛中脱颖而出的学生通常能够引起企业、研究机构等用人单位的关注。获得竞赛奖项不仅可以作为个人履历的亮点,还可以为进入理想的工作岗位提供有力的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值