中文官网访问这里 Dify.AI · 生成式 AI 应用创新引擎
一、前言
你现在可以打开deepseek和模型对话了吧,但TA老是介绍自己是深度求索公司巴拉巴拉一大推,这个Dify就是用来二次开发AI应用的脚手架,来训练它的!可以让TA成为你的法律助手,代码助手,儿童医生,心理咨询师、甚至还可以是虚拟男友、地理先生、周易大师等。
那为啥要本地部署Dify呢 ???
现在我们要创建个公司秘书助手,训练出来的秘书肯定是内部的事都知道,所以要部署在私服上哦!官方的说法是这样,如图:
通过自主可控的方式安全接入企业内部知识库,将企业多年沉淀的业务数据,快速转换成智能的搜索或问答服务,可深度集成到企业的 IM 和工作流中,全面提升客户服务和内部办公效率。
二、术语介绍
1. Agent 构建
自动创建智能体的过程。
以智能家居场景为例:当用户通过语音助手说出“调节卧室温度”时,系统会自动生成一个“温度调节智能体”。该智能体的构建过程可分为以下环节:
a. 功能实现路径
- 感知:通过麦克风接收语音指令,结合温湿度传感器获取当前环境数据(如室温26℃、湿度50%);
- 决策:解析用户指令,对比预设的舒适温度范围(如22-24℃),生成“降温2℃”的优化方案;
- 执行:调用空调控制接口,发送温度调节指令,同时实时监测温度变化。
b. 核心组件构成
- 规划模块:将“调节温度”分解为环境监测、指令解析、设备控制等子任务,并制定执行优先级;
- 记忆系统:存储用户历史偏好(如夜间偏好23℃)、设备响应日志等数据,用于优化后续决策;
- 工具调用:集成空调API接口、传感器数据接口等外部资源,实现物理环境交互。
c. 动态优化机制
该智能体会记录每次调节结果(如实际降温速度、能耗数据),通过机器学习算法修正温度预测模型。当检测到窗户开启时,自动切换为节能模式,体现环境适应能力。
Agent构建了“环境感知-任务分解-动态执行”的任务逻辑。
2. AI workflow 编排
是指将智能体与模型和知识库整合到一个统一的流程中。例如,在一个推荐系统中,智能体可能是一个根据用户偏好生成推荐列表的算法。而知识库(如预训练的语言模型)可以帮助该系统理解用户的意图并提供更准确的回答。
3. RAG 检索
在问答系统中,“RAG 检索”指的是结合知识库来增强回答准确性的技术。当一个用户询问一个问题时,系统会将问题与已有的知识库进行对比,并使用预训练的知识来生成更有说服力的答案。
4. 模型管理
“模型管理”是确保系统的持续性能和准确性的关键环节。例如,在训练过程中创建多个分类器模型,而模型管理则负责收集、存储并更新这些模型以保持它们的有效性,从而保证系统能够随着数据和需求的变化不断优化性能。
三、中文文档
四、本地部署Dify
就用docker部署,简单点。
在官方文档中找到 Docker Compose 部署 一栏,按文档说明执行命令即可
注意:外网不好这里都拉不动,会一直失败。
这里 80 端口被占用了!!!!
找到 World Wide Web 发布服务
右键选择 停止,并将启动类型改为 禁用
再来一次,成功了!!
访问看看呢,注册账号,进入主页 、。嗯~ 可以。
五、创建聊天助手
按官方文档来。。。
将之前本地部署的DeepSeek R1集成到Dify
「模型名称」填:deepseek-r1:1.5b。
「基础URL中」,若ollama和Dify是同一台机器部署,并且Dify是通过Docker部署,那么填http://host.docker.internal:11434,
刷新下dify web页,这里就可以选择模型了,然后再按官方文档继续创建应用