Dify快速构建AI应用

 中文官网访问这里  Dify.AI · 生成式 AI 应用创新引擎

一、前言

你现在可以打开deepseek和模型对话了吧,但TA老是介绍自己是深度求索公司巴拉巴拉一大推,这个Dify就是用来二次开发AI应用的脚手架,来训练它的!可以让TA成为你的法律助手,代码助手,儿童医生,心理咨询师、甚至还可以是虚拟男友、地理先生、周易大师等。

那为啥要本地部署Dify呢 ???

现在我们要创建个公司秘书助手,训练出来的秘书肯定是内部的事都知道,所以要部署在私服上哦!官方的说法是这样,如图:

通过自主可控的方式安全接入企业内部知识库,将企业多年沉淀的业务数据,快速转换成智能的搜索或问答服务,可深度集成到企业的 IM 和工作流中,全面提升客户服务和内部办公效率。

二、术语介绍

1. Agent 构建

自动创建智能体的过程。

以‌智能家居场景‌为例:当用户通过语音助手说出“调节卧室温度”时,系统会自动生成一个“温度调节智能体”‌。该智能体的构建过程可分为以下环节:


a. 功能实现路径
  • 感知‌:通过麦克风接收语音指令,结合温湿度传感器获取当前环境数据(如室温26℃、湿度50%)‌;
  • 决策‌:解析用户指令,对比预设的舒适温度范围(如22-24℃),生成“降温2℃”的优化方案‌;
  • 执行‌:调用空调控制接口,发送温度调节指令,同时实时监测温度变化‌。

b. 核心组件构成
  • 规划模块‌:将“调节温度”分解为环境监测、指令解析、设备控制等子任务,并制定执行优先级‌;
  • 记忆系统‌:存储用户历史偏好(如夜间偏好23℃)、设备响应日志等数据,用于优化后续决策‌;
  • 工具调用‌:集成空调API接口、传感器数据接口等外部资源,实现物理环境交互‌。

c. 动态优化机制

该智能体会记录每次调节结果(如实际降温速度、能耗数据),通过机器学习算法修正温度预测模型‌。当检测到窗户开启时,自动切换为节能模式,体现环境适应能力‌。


Agent构建了“环境感知-任务分解-动态执行”的任务逻辑。

2. AI workflow 编排

是指将智能体与模型和知识库整合到一个统一的流程中。例如,在一个推荐系统中,智能体可能是一个根据用户偏好生成推荐列表的算法。而知识库(如预训练的语言模型)可以帮助该系统理解用户的意图并提供更准确的回答。

3. RAG 检索

在问答系统中,“RAG 检索”指的是结合知识库来增强回答准确性的技术。当一个用户询问一个问题时,系统会将问题与已有的知识库进行对比,并使用预训练的知识来生成更有说服力的答案。

4. 模型管理

“模型管理”是确保系统的持续性能和准确性的关键环节。例如,在训练过程中创建多个分类器模型,而模型管理则负责收集、存储并更新这些模型以保持它们的有效性,从而保证系统能够随着数据和需求的变化不断优化性能。

三、中文文档

欢迎使用 Dify | Dify

四、本地部署Dify

就用docker部署,简单点。

在官方文档中找到 Docker Compose 部署 一栏,按文档说明执行命令即可

注意:外网不好这里都拉不动,会一直失败。

这里 80 端口被占用了!!!!

找到 ‌World Wide Web 发布服务 

右键选择 ‌停止‌,并将启动类型改为 ‌禁用‌‌

 再来一次,成功了!!

访问看看呢,注册账号,进入主页 、。嗯~ 可以。

五、创建聊天助手

按官方文档来。。。

将之前本地部署的DeepSeek R1集成到Dify

「模型名称」填:deepseek-r1:1.5b。

「基础URL中」,若ollama和Dify是同一台机器部署,并且Dify是通过Docker部署,那么填http://host.docker.internal:11434,

刷新下dify web页,这里就可以选择模型了,然后再按官方文档继续创建应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值