- 博客(1571)
- 收藏
- 关注
原创 一文读懂LLM智能体:定义、方法与应用前景(建议收藏)
本文系统综述了基于大型语言模型(LLM)的智能体,将其视为通往通用人工智能的潜在路径。文章详细阐述了LLM智能体的定义、核心组件(规划、记忆、反思等)、与强化学习智能体的对比,以及单智能体和多智能体系统的架构。同时介绍了主流数据集、基准测试,探讨了在自然科学、工程系统等领域的应用前景,并分析了LLM固有约束、安全信任等挑战及持续学习、多模态融合等发展趋势。
2025-11-04 14:55:44
1743
原创 DeepSeek新手必看!全功能详解与实操指南
对于有特定需求的用户,DeepSeek还支持上传文件建立自定义知识库。将与自己工作、学习相关的文档、资料上传后,DeepSeek就能基于这些知识为你提供更个性化、针对性更强的回答和建议。例如,企业用户可以上传公司的内部规章制度、业务资料等,让DeepSeek成为企业内部的智能助手;学生可以上传自己的学习笔记、专业文献等,帮助自己更好地学习和复习。
2025-02-05 18:05:20
24353
原创 一文带你搞懂什么是生成式人工智能(GenAI)
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
2024-11-13 11:43:32
12558
原创 工业大模型市场图谱:53个工业大模型全面梳理(通用、行业、场景大模型)看这一篇就够了!
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
2024-09-21 10:11:41
6300
原创 AI大模型之Prompt工程指南:什么是Prompt工程?Prompt工程的格式与要求
Prompt是一种基于人工智能(AI)指令的技术,通过明确而具体的指导语言模型的输出。在提示词工程中,Prompt的定义涵盖了任务、指令和角色三个主要元素,以确保模型生成符合用户需求的文本。Prompt明确而简洁地陈述了用户要求模型生成的内容。这包括在特定应用场景中,用户希望模型完成的任务或生成的文本类型。模型在生成文本时应遵循的指令是Prompt中的关键要素之一。这些指令具体规定了模型生成文本的方式,通过清晰的语言来引导模型以获得所需的输出。Prompt中还包括模型在生成文本时应扮演的角色。
2024-08-01 22:18:51
24148
1
原创 突破!Google开源A2UI协议,AI Agent终于能“写UI“了,小白程序员也能秒变大神!
A2UI是Google开源的Agent-to-User Interface协议,允许AI Agent通过声明式JSON描述UI布局与组件,前端负责渲染。它解决了Agent UI的动态性、安全性、跨平台等挑战,实现流式UI生成和数据绑定。与AG-UI、CopilotKit等协议形成互补,共同构建完整Agent应用栈,让AI不再只会"说话",而是开始学会"表达UI",为下一代AI应用开发提供新思路。
2025-12-27 17:47:55
573
原创 AGI(十二):RAG技术基础及企业级RAG系统打造
RAG (Retrieval-Augmented Generation,检索增强生成) 是目前大模型应用中最火热的技术架构之一。RAG是一种结合信息检索(Retrieval)和文本生 成(Generation)的技术,RAG技术通过实时检索相关文档或信息,并将其作为上下文输入到生成模型中,从而提高生成结果的时效性和准确性。简单来说,RAG 就是给大模型配了一个“外部知识库”。当用户提问时,系统先去知识库里查资料,把查到的资料和问题一起喂给模型,让模型参考这些资料来回答。
2025-12-27 17:46:47
338
原创 [特殊字符]AI编程新革命!RAG技术让小白程序员秒变大神,9大应用场景全解锁!大模型开发者必看,效率提升10倍!
RAG技术结合检索与生成,为内容创作者提供9大核心应用:快速获取背景信息、生成结构化内容、优化语言表达、自动多语言生成、动态更新内容、避免重复劳动、个性化推荐、工具平台集成及挑战优化。该技术可大幅提升创作效率,特别是在需要大量背景知识或多语言支持的场景中,通过提示词优化和高效模型选择,平衡速度与质量,确保内容权威性和时效性。
2025-12-27 17:45:36
593
原创 AI黑科技揭秘!RAG实战教程:让大模型不再“一本正经地胡说八道“,小白程序员也能秒变AI大神!
本文详解RAG(检索增强生成)技术框架,解决LLM幻觉、时效性和数据安全问题。涵盖版面分析、知识库构建、大模型微调等四大核心模块,提供从数据获取到模型应用的完整实战指南,助开发者构建高效、准确的智能知识问答系统。
2025-12-27 17:44:43
340
原创 技术加速器—54种组合、4步炼金法:一文读透多模态 RAG 的全景地图
每周五,我们都会围绕一个前沿技术主题,展开一场深度的内部技术分享会。不仅是为了团队内部的碰撞与成长,也希望通过这样的形式,将我们的思考与实践记录、沉淀、分享给更多同行者。
2025-12-27 17:44:05
357
原创 AI技术前沿:RAG+SSD=大模型“超级大脑“,开发者必看的技术革命!
RAG架构为大模型提供"长期记忆",企业和个性化需求推动RAG存储需求增长。AI推理中的RAG向量数据库存储介质正从"内存参与检索"向"全SSD存储架构"过渡,推动高带宽、大容量SSD需求增加。火山引擎TOS Vectors开启向量存储新范式,采用多层级本地缓存架构,满足高/低频数据分层需求,降低企业大规模使用向量数据的门槛。RAG架构为大模型提供长期记忆,企业和个性化需求推动了对RAG存储需求的增长。
2025-12-27 17:43:10
494
原创 给 RAG 装上“侦探大脑”:深度解读 MemR3 如何用“反思性推理”重塑 AI 记忆
在当下的大语言模型(LLM)智能体开发中,记忆(Memory)是区分“复读机”和“真智能助手”的关键分水岭。我们已经有了很多存储技术——向量数据库、知识图谱、各种压缩算法,试图把海量的历史对话塞进模型的脑子里。然而,现有的系统存在一个巨大的短板:它们只管“存”,不管“怎么取”。大多数现有的检索增强生成(RAG)系统,就像是一个莽撞的图书管理员:用户问个问题,它就去书堆里抓一本书扔给你,至于抓得对不对、够不够、里面有没有矛盾,它不管。
2025-12-27 17:42:20
331
原创 大模型幻觉终结者!GraphRAG技术解析:从入门到精通,小白也能变身AI大神
从 GraphRAG 索引和检索的流程中不难看出,由于其构建了一个很完整的知识图谱,因此在检索时能够更精准地定位与问题相关联的上下文,从而提高生成结果的相关性和准确性。同时,知识图谱结构使得复杂关系和多跳推理成为可能,这在传统基于向量检索的 RAG 方法中往往难以实现。尤其在大规模知识库或跨领域信息整合场景下,GraphRAG 能有效降低信息遗漏的风险,并提升对复杂问题的回答能力,为实际应用提供了更可靠的支持。然而,正因为知识图谱需要完整的实体与关系构建,这不可避免地带来了额外的成本与复杂性。
2025-12-27 17:36:27
267
原创 RAG知识库实战指南:ima与NotebookLM深度全解,收藏这一篇就够了!
笔者在这里只提及知识库的原始定义,也就是字面意思:被整理过的信息仓库,用于储存文档等知识(包括资源和笔记)。RAG全称是:检索增强生成 (Retrieval-Augmented Generation)是一种AI生成回答的技术框架,采用RAG框架的大模型在生成回答时,会先由检索系统检索指定数据库的内容,然后再将检索内容和问题交给大模型,最后再由大模型生成内容。这里简单提及一下在大模型生成回答时,底层的数据支持是预训练数据其次才是联网搜索的数据。
2025-12-27 17:34:49
335
原创 RAG 进阶全系列教程(非常详细),传统/多模态/Agentic/GraphRAG 全解,收藏这一篇就够了!
RAG已经不是什么新鲜的概念了,自2023年发展至今也有两年时间了,从最早的传统RAG进化到如今各类更智能的RAG,今天给大家简单介绍下现在用的最多的这四种RAG。传统RAG传统RAG是最早期出现的RAG架构方式,也是我们通常所指传统意义上RAG基本概念。它的出现了,通过外挂知识库的方式,降低了大模型幻觉,解决了大模型即使不通过微调,也可以使大模型具备专业的领域知识。其核心的流程包含三个阶段:索引构建、查询与生成。索引阶段:将原始文档转换成向量,存储至向量数据库。
2025-12-26 17:59:18
641
原创 最全梳理:一文搞懂RAG技术的5种范式!
高级 RAG 引入了具体的改进措施,以克服 Naive RAG 的局限性。为了提高检索质量,它采用了检索前和检索后策略。为了解决索引问题,高级 RAG 通过使用滑动窗口方法、细粒度分割和元数据的整合,改进了索引技术。此外,它还采用了多种优化方法来简化检索过程。模块化 RAG 架构超越了前两种 RAG 范式,具有更强的适应性和多功能性。它采用了多种策略来改进其组件,例如为相似性搜索添加搜索模块,以及通过微调完善检索器。为应对特定挑战,还引入了重组 RAG 模块和重排 RAG 管道等创新方法。
2025-12-26 17:58:25
670
原创 面试官问:为什么 Bad Case 修复比新增数据更重要?
不是“随机错题”,而是“结构性偏差样本”初学者会理解成:Bad Case 就是模型回答错的样例。Bad Case = 模型错误高发 + 用户成本高 + 结构性偏差明显的样本举例:我想办签证,需要什么材料?护照,身份证你看,它并不算“灾难性错误”。漏信息无步骤化无条件判断无风险提示这类错误会在所有“流程类任务”里重复出现。错误能不能教到模型上去?错误是不是体现了系统能力缺陷?当你在面试里被问:为什么 Bad Case 修复比新增数据更重要?
2025-12-26 17:57:39
468
原创 【小白必看】RAG+推理=AI超能力?大模型开发者的进阶秘籍,OpenAI O1 vs DeepSeek-R1技术对决!
本文系统综述了RAG与推理协同技术,分析了OpenAI O1和DeepSeek-R1如何推动这一领域发展。文章构建了完整分类体系,阐述了推理增强检索(RAR)和检索增强推理(ReAR)两种模式,比较了预定义与动态工作流优劣,提供了基于提示、调整和强化学习的实施策略,同时探讨了计算成本、过度思考等风险及实用指南,为开发者全面把握这一技术提供了参考
2025-12-26 17:55:10
710
原创 【保姆级教程】RAG技术入门到精通:2025年AI开发新方向,小白也能成为大模型专家
RAG技术正从独立框架演变为智能体生态的关键组件,2025年将迎来五大发展趋势:与Agent系统深度融合、多模态RAG体系化建设、GraphRAG精细化与动态化、轻量化低成本方案、行业定制化解决方案。这些趋势将推动RAG向智能化、多模态化、精细化、低成本化和行业化方向发展,为AI应用落地提供更强大的技术支持。
2025-12-26 17:54:35
442
原创 2024 RAG 框架选型攻略(非常详细),十大最佳框架从入门到精通,收藏这一篇就够了!
RAG 框架的世界多种多样,发展迅速,我们探讨的十个框架都具有独特的优势和功能。项目的具体要求你需要的定制化程度和灵活性框架的可扩展性和性能特点围绕框架的社区规模和活动可用文档和支持的质量通过仔细评估这些因素并尝试使用不同的框架,你可以找到最适合你需求的 RAG 解决方案,帮助你构建更智能、更能感知上下文的人工智能应用程序。对于希望在其应用程序和服务中利用人工智能力量的开发人员和组织机构来说,随时了解 RAG 技术的最新发展情况至关重要。
2025-12-26 17:53:41
237
原创 迎接「万物皆可RAG」时代:最新综述展示50多种多模态组合的巨大待探索空间
华中科技大学等机构发布首篇覆盖几乎所有模态组合的MM-RAG综述,揭示54种潜在组合中仅18种有研究。论文构建全新分类法,解析MM-RAG四大关键阶段(预检索、检索、增强、生成),并提供训练策略、评估方法和应用前瞻,为AI开发者提供全面技术参考,引领多模态应用新方向。大模型最广泛的应用如 ChatGPT、Deepseek、千问、豆包、Gemini 等通常会连接互联网进行检索增强生成(RAG)来产生用户问题的答案。
2025-12-26 17:50:48
612
原创 工具链yyds!大模型开发者的通关密码,面试官都惊了
大模型工具链(Chained Tool Calls)是用户一句话需调用2-4个工具串联生成回答的过程,是Function Call的核心难点,也是面试官判断候选人是否真做过项目的标准。文章详细解析了工具链的本质、阶梯式训练方法(从单工具到多轮多工具链)、工程落地方式、错误场景处理及数据构建技巧,掌握工具链才能真正理解Agent系统的"思考→调用→观察→再思考→再调用→最终回答"的ReAct循环。
2025-12-26 17:50:17
568
原创 RAG 开源项目实战教程(非常详细),新手入门从零到一,收藏这一篇就够了!
三个月前,我在 Github 上开源的一个 RAG 练手项目,目前已经有了 327 个 star,总共解决了 22 个 issues。结合过去几个月的项目实践,我重新对项目做了轻量化重构,降低资源消耗与部署门槛。项目地址:https://github.com/weiwill88/Local_Pdf_Chat_RAG麻雀虽小,五脏俱全。总体来说,这是一个轻量级但组件完整的本地化 RAG 智能问答平台。可以通过 Gradio Web UI 直观体验混合检索、重排序、递归查询及联网搜索等高级 RAG 策略,更能从
2025-12-26 17:48:42
524
原创 AI程序员必看!RAG技术7大核心概念,让大模型告别“幻觉“,小白也能秒懂
本文详细介绍了RAG(检索增强生成)技术的7大核心概念:向量数据库实现语义检索,混合检索结合关键词与语义优势,分块嵌入与索引优化存储,重排序提升相关性,上下文融合确保连贯性,准确率与召回率平衡评估,以及知识图谱增强推理能力。RAG通过从知识库检索准确内容再生成回答,有效避免大模型幻觉,是AI产品经理和开发者的必备技术。
2025-12-26 17:46:01
323
原创 震惊!自动驾驶大模型“反向操作“火了!复旦团队用“以终为始“思维颠覆传统,开源代码小白也能上手
复旦大学与引望智能联合推出WAM-Diff框架,创新性地将离散掩码扩散模型引入自动驾驶规划,结合MoE架构与在线强化学习,采用"反因果序"策略实现"以终为始"的规划方式。该方法摆脱了传统自回归模型的"从左到右"时序限制,在NAVSIM评测中取得SOTA成绩,证明了非自回归生成范式在复杂自动驾驶场景下的巨大潜力,为L4级自动驾驶提供了新思路。
2025-12-25 17:21:44
583
原创 仅需15%全量Attention!「RTPurbo」阿里Qwen3长文本推理5倍压缩方案来了
为什么大模型厂商给了 128K 的上下文窗口,却在计费上让长文本显著更贵?为什么 Claude 能 “吞下整本书”,但官方示例往往只展示几千字的文档?为什么所有大模型厂商都在卷 “更长上下文”,而真正做落地的产品经理却天天琢磨 “怎么把用户输入变短”?这些看似矛盾的现象,其实答案藏在一个长期被技术光环遮掩的真相里:长序列,正在成为大模型应用里最昂贵的奢侈品。在当前主流的 Full Attention 机制下,计算开销会随着输入长度平方增长,序列一长,处理就变得 “又贵又慢”(见图 1)。
2025-12-25 17:21:04
520
原创 大模型时代,程序员只会写代码还要被淘汰?AI Agent 开发必备技能清单(非常详细)!
云端智能体融合感知、认知、行动三大核心模块,正基于大语言模型迎来爆发期。云计算通过弹性算力、分布式架构等技术提供全方位支撑,全球市场呈爆发式增长,应用场景持续拓展至金融、教育、零售等领域。未来将迎来多智能体协同、服务范式重构等趋势,同时面临技术成熟度不足等挑战,亟需加强核心技术攻关与标准体系建设。
2025-12-25 17:20:22
476
原创 震惊!AI智能体记忆系统揭秘:小白也能看懂的百页论文精华,大模型开发者必看!
文章综述了AI智能体记忆系统的统一分析框架Forms-Functions-Dynamics,辨析了与LLM Memory、RAG等技术的区别,详细分析了记忆的载体、功能和运作机制,并展望了从记忆检索到生成、从手工规则到自动化管理的未来发展方向,为理解智能体长期认知能力提供了系统性视角。
2025-12-25 17:19:14
391
原创 AI编程时代已来:大模型让代码小白也能写出神仙代码
大语言模型(LLM)通过学习海量文本获得语言能力,其成功源于语言数字化、计算能力提升和Transformer架构三大因素。LLM虽能完成编程辅助等任务,但缺乏真正理解。除LLM外,还有视觉、语音、强化学习、世界模型和多模态模型等多种AI技术,它们共同推动机器向"像人一样看、听、说、想、行"的方向发展,引发了对智能本质的哲学思考。
2025-12-25 17:18:03
396
原创 【硬核干货】国产GPU杀疯了!S5000单卡跑满血DeepSeek大模型,1024 token/s解码速度让程序员惊呼“yyds“!
摩尔线程发布S5000 AI计算卡刷新国产GPU推理记录;推出MUSA统一计算架构及"花港"GPU,算力密度提升50%;公布"华山"AI芯片和"庐山"图形芯片;发布夸娥万卡集群支持万亿参数模型训练;推出AI算力笔记本AIBOOK可本地运行30B大模型;在具身智能、量子计算等前沿领域布局,构建完整开发者生态。
2025-12-25 17:17:29
551
原创 Mamba作者团队提出SonicMoE:一个Token舍入,让MoE训练速度提升近2倍
混合专家(MoE)模型已成为在不显著增加计算成本的情况下,实现语言模型规模化扩展的事实标准架构。近期 MoE 模型展现出明显的高专家粒度(更小的专家中间层维度)和高稀疏性(在专家总数增加的情况下保持激活专家数不变)的趋势,这提升了单位 FLOPs 的模型质量。这一趋势在近期的开源模型中表现尤为明显,例如 DeepSeek V3、Kimi K2 以及 Qwen3 MoE 等,它们均采用了更细粒度的专家设计(更小的中间层维度)和更高的稀疏度,在保持激活参数量不变的同时大幅增加了总参数量。
2025-12-25 17:16:30
488
原创 AI Agent(智能体)如何构建?什么时候该用?有哪些模式?
AI Agent、Agentic AI、Agentic架构、Agentic工作流、Agentic模式——当前,智能体已成为技术语境中的高频词汇。然而,究竟何为智能体?我们又应如何设计出稳定且高效的智能体系统?智能体的本质在于其具备动态规划与自主执行任务的能力,常通过调用外部工具与持久化记忆来达成复杂目标。本文将系统梳理智能体的典型设计范式,详述三种主流工作流模式与四种智能体模式,核心在于厘清结构化的工作流与高自主性的智能体模式之间的本质差异。
2025-12-25 17:15:38
559
原创 20251225_171103_字节做了个_AI_手机,钉钉做了台_AI_主机
没想到,2025 年的最后一个月,AI 硬件圈竟然这么热闹。月初,豆包 AI 手机上线即刷屏。大家发现,原来让 AI 接管手机之后,那么多事情都可以自动化。但没想到,上线第二天,一些 App 就用不了了 —— 原来多个平台把豆包助手当成「脚本类外挂」来风控了。一场关于隐私安全、互联网盈利模式的大讨论就此展开,到现在还没平息。更出人意料的是,AI 手机还没看明白,这几天又来了个 AI 主机。在昨天的 AI 钉钉 1.1 发布会上,钉钉发布了第二款 AI 硬件 ——DingTalk Real。
2025-12-25 17:14:56
792
原创 GLM-4.7太强了,170次搜索后自己整理出80+家Agent企业详细报告,小白程序员必看!
智谱GLM-4.7模型完成Agent行业调研,进行170+次搜索,整理100+家企业详细数据并自动生成结构化报告和精美PPT。模型展现出交错式、保留式和轮级思考能力,已能自主完成复杂任务,从ChatBot进化为真正的Agent。通过z.ai平台,用户可体验其AI PPT和海报生成能力,见证国内AI技术的飞速发展及特色落地应用。
2025-12-24 17:16:23
1662
原创 Agent 实战避坑全指南:Demo 猛如龙,实战一条虫?深度剖析原因与解法(建议收藏)!
智能体适应性研究取得突破性进展。最新51页综述提出"2×2适应性框架",将优化对象(智能体/工具)与信号来源(工具反馈/最终评估)组合成四大范式。实验显示,优化工具(T2范式)仅需2400样本即可达到优化智能体(A2范式)17万样本的效果,数据效率提升70倍,训练速度加快33倍,在医学问答等专业领域泛化能力更强(准确率76.6% vs 71.8%)。研究指出四大前沿方向:协同适应、持续适应、安全适应和高效适应,为解决智能体"演示强实战弱"问题提供理论指导。
2025-12-24 17:11:15
835
原创 AI钉钉Agent OS发布!人机协同新范式开启,程序员是“被取代“还是“开挂升级“?
钉钉发布全球首个AI工作智能操作系统Agent OS,推出"木兰"1.1版本,构建包括钉钉ONE交互入口、DingTalk Real硬件、AI搜问、AI表格等20余款产品矩阵,实现AI与人类协同工作。标志钉钉从移动互联网应用转向AI时代产品范式变革,开放生态共建行业模型和AI硬件市场,助力企业级AI应用落地。
2025-12-24 17:08:17
568
原创 最火、最全的Agent记忆综述,NUS、人大、复旦、北大等联合出品
在过去两年里,记忆(Memory)几乎从 “可选模块” 迅速变成了 Agent 系统的 “基础设施”:对话型助手需要记住用户习惯与历史偏好;代码 / 软件工程 Agent 需要记住仓库结构、约束与修复策略;深度研究型 Agent 需要记住已阅读的证据链、关键假设与失败路径,没有 memory 的智能体难以跨任务保留有效经验,难以稳定维护用户偏好与身份设定,也难以在长周期协作中保持行为一致、避免反复犯同样的错误。
2025-12-24 17:07:46
925
原创 AI Agent:程序员的终极外挂,2025年不懂这个,你可能就要被优化了!
2025年Agent技术将从概念走向商业主流,它是具备感知-决策-执行闭环的"自主智能体",对程序员而言是超级外挂。可通过LLM+强化学习框架自主拆解任务,直接操作API和云服务,具备记忆进化机制。程序员应进行认知升级和技能重构,掌握Agent协同工作的新语言,以放大自身价值,抢占AI Agent技术红利。
2025-12-24 17:03:50
584
原创 【大模型救星】RAG检索总“断章取义“?ChatDOC团队揭秘上下文扩展+二次重排黑科技!小白也能秒懂的检索增强方案!
文章探讨了RAG系统中因文档切块导致的语义割裂问题,指出这是检索不完整的根源。作者分析了无法找到完美切块规则的原因,并提出"上下文扩展+二次重排"解决方案,通过模仿人类阅读习惯,先定位关键片段再扩展上下文,有效弥补信息缺口。实验证明这一策略能显著提升检索完整性和准确性,为高精度企业级RAG应用提供了有效路径。
2025-12-24 17:03:11
797
原创 大模型程序员必备!PaddleOCR-VL文档解析全攻略:从入门到实战,RAG应用不再愁
本文介绍基于PaddleOCR-VL的多模态文档解析技术,通过版面分析和元素级识别两阶段处理,将复杂文档(含表格、图表、公式等)转换为结构化Markdown格式。采用0.9B轻量级模型,有效还原文档原始信息,解决传统解析方案的局限性。文章详解技术原理、企业级应用实战、效果调优及环境配置,为构建RAG知识库提供实用解决方案。
2025-12-24 17:01:43
994
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅