- 博客(1021)
- 收藏
- 关注

原创 DeepSeek新手必看!全功能详解与实操指南
对于有特定需求的用户,DeepSeek还支持上传文件建立自定义知识库。将与自己工作、学习相关的文档、资料上传后,DeepSeek就能基于这些知识为你提供更个性化、针对性更强的回答和建议。例如,企业用户可以上传公司的内部规章制度、业务资料等,让DeepSeek成为企业内部的智能助手;学生可以上传自己的学习笔记、专业文献等,帮助自己更好地学习和复习。
2025-02-05 18:05:20
20723

原创 一文带你搞懂什么是生成式人工智能(GenAI)
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
2024-11-13 11:43:32
9093

原创 工业大模型市场图谱:53个工业大模型全面梳理(通用、行业、场景大模型)看这一篇就够了!
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
2024-09-21 10:11:41
5647

原创 AI大模型之Prompt工程指南:什么是Prompt工程?Prompt工程的格式与要求
Prompt是一种基于人工智能(AI)指令的技术,通过明确而具体的指导语言模型的输出。在提示词工程中,Prompt的定义涵盖了任务、指令和角色三个主要元素,以确保模型生成符合用户需求的文本。Prompt明确而简洁地陈述了用户要求模型生成的内容。这包括在特定应用场景中,用户希望模型完成的任务或生成的文本类型。模型在生成文本时应遵循的指令是Prompt中的关键要素之一。这些指令具体规定了模型生成文本的方式,通过清晰的语言来引导模型以获得所需的输出。Prompt中还包括模型在生成文本时应扮演的角色。
2024-08-01 22:18:51
21341
1
原创 企业级大模型知识库部署 | 为什么要在 MacBook上搭建知识库?
另外对于 IT 同学来说,自己亲手搭建一个完整的方案、能灵活调整和对接各种不同的模型、评测各种模型不同的表现,也是出于对技术的探索本能使然。行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
2025-05-23 19:23:55
417
原创 大模型爆款书推荐《从零构建大语言模型》,中文版来了!
2025 年,人工智能依然是科技圈最热的风口。ChatGPT、Claude、DeepSeek 等模型层出不穷,不断刷新人们对 AI 能力的想象。而支撑这一切的,正是大语言模型(LLM)——这个曾经只是大厂的专属!但问题来了:构建一个属于自己的大模型,真的非得依赖大团队、大算力、大预算不可吗?其实未必!Build a Large Language Model (From Scratch) 这本书,正在彻底打破这个思维定式。
2025-05-20 19:58:25
612
原创 大模型应用开发 | 2025程序员如何转行大模型?可以选择哪些高薪岗位?
2025年,随着DeepSeek的出现和大模型技术的发展,AI行业迎来了前所未有的热潮。对于许多程序员来说,这是一个不容错过的转行良机。
2025-05-20 08:45:00
972
原创 大模型应用开发 | Java开发者如何成功转型AI大模型?
在AI大模型技术席卷全球的浪潮下,传统Java开发者正面临前所未有的职业转型机遇。据LinkedIn 2023年报告,AI相关岗位增长率高达74%,而具备传统开发经验又掌握AI技能的复合型人才尤为稀缺。
2025-05-19 21:24:31
667
原创 2025最新最全大模型学习路线,零基础入门到精通,看完这一篇就够了!
当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!伴随着人才需求增大,AI 大模型新发岗位平均月薪也由 2023 年的 ¥45812 上升至 ¥46452,远超新经济行业平均水平。最近很多程序员朋友都已经学习或者准备学习 AI 大模型,也经常会有小伙伴咨询学习路线和学习资料。学习第一步,咱们先理清楚。
2025-05-16 10:53:27
410
原创 一篇详解当前流行的向量数据库,RAG系统中的向量数据库怎么选?
Pinecone 是一个全托管的云原生向量数据库,专为高性能向量搜索设计,支持实时数据处理和低延迟查询。Milvus 是一个开源向量数据库,基于 FAISS、Annoy 和 HNSW 等算法构建,专为高维向量搜索优化,支持多种索引类型。Weaviate 是一个开源向量数据库,支持混合搜索(向量搜索+传统关键字搜索),内置模块化架构,易于与AI模型集成。Elasticsearch 是一个基于 Lucene 的分布式搜索和分析引擎,通过插件支持向量搜索,适合需要结合结构化和非结构化数据的场景。
2025-05-15 17:51:31
591
原创 大模型入门到精通(非常详细)全解析模型量化Quantization!
大模型(如DeepSeek、Qwen等)参数规模动辄数百亿,全精度(FP32)存储和推理会占用大量显存且速度慢。而模型量化技术通过将浮点数压缩为低精度整数,不仅能让大模型“瘦身”至1/4甚至更小体积,还能显著提升推理效率。例如,175B参数的模型用FP32需700GB显存,而量化到INT4仅需约10GB。
2025-05-13 20:04:57
1063
原创 大模型RAG实战 | RAG系统构建与微调实战
OpenAI于2022年11月30日发布的ChatGPT几乎颠覆了现有的NLP范式, 使NLP算法的日常工作和技术栈都发生了一定的改变。最受关注的两个 落地方向分别为RAG(Retrieval-Augmented Generation,检索增强生 成)和Agent。
2025-05-11 07:00:00
893
原创 如何学会手搓一个AI Agent?《大模型应用开发:动手做AI Agent》
对于构建 Agent 来说,目前业界已经具备技术基础,包括大模型和 AIGC 模型、人工智能应用开发框架和工具、软件平台、丰富的数据等。只要结合具体的业务场景,将现有技术进行整合,就能开发出满足需求的 Agent。
2025-05-10 08:15:00
592
原创 大模型论文 | HiRAG:基于层级知识索引和检索的高精度RAG
Year: 2025检索增强生成(Retrieval Augmented Generation,RAG)通过检索外部知识增强大语言模型(Large Language Models,LLMs)的领域任务能力。朴素RAG方法检索与查询相关的文本块,这些文本块作为大型语言模型生成响应的参考,用于缓解“幻觉”问题(如生成不准确内容),然而朴素RAG方法仅检索文本片段,忽略了实体间的关联(如“亚马逊”与“AWS”的关系),导致上下文碎片化。
2025-05-09 15:23:49
925
原创 大模型论文 | LightPROF:基于知识图谱的大语言模型轻量级推理框架
随着更多大语言模型(LLM)的出现,其持续提升的性能为自然语言处理(NLP)领域带来了重大创新。在庞大数据量和海量参数下展现的"突现能力",使LLM在复杂零样本任务中表现卓越。尽管效果显著,LLM在知识密集型任务中仍面临挑战:由于缺乏任务特定的先验知识和理解能力,以及模型训练的高成本耗时性,导致知识库持续更新困难。为解决这些问题,研究者提出通过知识图谱(KG)为LLM提供可靠且持续更新的知识库,以支持更精准可解释的推理。KGQA作为典型的知识密集型任务,现有工作探索了多种LLM与KG协同推理方法。
2025-05-09 14:07:44
608
原创 大模型RAG实战 | 基于LangChain实现RAG应用
OpenAI于2022年11月30日发布的ChatGPT几乎颠覆了现有的NLP范式, 使NLP算法的日常工作和技术栈都发生了一定的改变。最受关注的两个 落地方向分别为RAG(Retrieval-Augmented Generation,检索增强生 成)和Agent。
2025-05-08 18:50:27
745
原创 大模型论文 | 用于通用上下文推理的基于提示的知识图谱基础模型
Year:2024知识图谱上的推理涉及从现有关系事实中推断出新的关系事实。早期的相关工作主要集中在转导设置下对静态知识图谱进行推理,但缺乏处理知识图谱中新实体或新关系的泛化能力。最近的研究 考虑了已见过的实体和未见过的实体之间的关系模式,从而实现了归纳推理。然而,由于预训练的知识图谱和未见过的知识图谱之间的实体和关系词汇表既不共享也没有关联,这些方法在对未见过的知识图谱进行推理时仍然缺乏迁移能力。将其泛化到新实体、新关系甚至不同知识图谱上的主要挑战在于如何表示这些未见过的数据。
2025-05-06 17:39:38
958
原创 从零入门掌握AI大模型技术,大模型学习路线从入门到精通,收藏这一篇就够了!
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
2025-05-05 19:38:16
318
原创 大模型入门(四)MHA多头注意力机制技术
多头注意力机制(Multi-Head Attention)是深度学习领域中一种重要的技术,最早由Vaswani等人在2017年的论文《Attention is All You Need》中提出。多头注意力(Multi-Head Attention)是一种在Transformer模型中被广泛采用的注意力机制扩展形式,它通过并行地运行多个独立的注意力机制来获取输入序列的不同子空间的注意力分布,从而更全面地捕获序列中潜在的多种语义关联。
2025-05-04 09:00:00
575
原创 大模型入门(三)MoE混合专家模型技术
想象一个人工智能模型是一个专家团队,每个人都有自己独特的专业知识。混合专家(MoE)模型通过将复杂任务划分为(称为专家的)更小的专业网络来运行这一原则。每个专家专注于问题的一个特定方面,使模型能够更有效、更准确地解决任务。就像医生负责医疗问题,技师负责汽车问题,厨师负责烹饪一样,每个专家都有自己擅长的事情。通过合作,这些专家可以更有效地解决更广泛的问题。
2025-05-03 08:45:00
674
原创 大模型入门(二)什么是模型量化?模型量化主要作用
(Quantization)是指以较低的推理精度损失将连续取值(通常为float32或者大量可能的离散值)的浮点型权重近似为有限多个离散值(通常为int8)的过程。通过以更少的位数表示浮点数据,模型量化可以减少模型尺寸,进而减少在推理时的内存消耗,并且在一些低精度运算较快的处理器上可以增加推理速度。具体如下图所示,[-T, T]是量化前的数据范围,[-127, 127]是量化后的数据范围。量化将模型参数的表示从浮点数精度降低为整数或低精度形式,以减小模型的存储和计算开销。
2025-05-02 08:30:00
811
原创 大模型入门(一)知识蒸馏(模型压缩)技术
知识蒸馏(Knowledge Distillation)是一种模型压缩技术,通过训练小型“学生模型”模仿大型“教师模型”的输出分布,实现知识迁移。其核心在于利用教师模型的软标签(概率分布)而非硬标签,传递更丰富的类别间关系信息。14年NIPS上由Google 的Hinton发表的《Distilling the Knowledge in a Neural Network》是首次提出知识蒸馏这个概念。
2025-05-01 08:30:00
890
原创 大模型论文 | “推理法庭“:多模型协作让AI推理更精准,多跳推理准确率大幅提升
你是否曾经被AI给出的答案搞糊涂过?明明听起来很有道理,但总感觉哪里不对劲?没错,即使是当下最先进的大语言模型(LLM),在面对需要多步骤推理的复杂问题时,依然会出现幻觉(生成虚假信息)和推理错误(无法正确整合和解释证据)。尤其是在需要整合多个信息源的"多跳推理"任务中,这一问题更为突出。近日,一项名为"Reasoning Court"(推理法庭)的创新框架问世,它通过引入"法官"角色来评估多个AIagent的推理过程,显著提升了复杂推理任务的准确性。
2025-05-01 07:45:00
839
原创 大语言模型(LLMs)| 什么是 LoRA?LoRA 背后的数学原理,为什么只训练少量参数并且有效?
简单来说,LoRA是一种通过低秩分解来微调大模型的技术。它的核心思想是:在不改变原始模型权重的情况下,仅通过引入少量可训练参数,就能让模型适配新的任务。相比传统微调方法,LoRA大幅降低了计算资源和存储需求,堪称“省时省力”的微调神器。打个比方,传统微调就像给整个模型“重新装修”,需要调整每一个房间;而LoRA更像是“局部改造”,只在关键区域加装一些模块,就能让房子焕然一新。这种“局部改造”的方式不仅高效,还能保留模型原有的知识,避免因过度调整而导致的性能下降。
2025-04-30 15:54:25
769
原创 一文详解!四种主流LLM微调方法:Full-tuning、Freeze-tuning、LoRA和QLoRA
如果你是一个开发者,手里有一个强大的语言模型(LLM),想用它来做点厉害的事情,比如文本分类、智能问答,或者识别文本里的关键信息。可问题来了:训练这么一个庞然大物需要海量的计算资源和时间,你手头的电脑可能累到冒烟,甚至还有数据不够多导致模型“学歪”的风险。别慌,今天我们就来聊聊四种LLM微调方法,帮你高效优化模型,轻松应对各种场景。这四种方法分别是:Full-tuning(全量微调)、Freeze-tuning(冻结部分参数微调)、LoRA(低秩适应)和QLoRA(量化低秩适应)。它们各有绝活,能在不同情况
2025-04-29 10:23:30
866
原创 大模型从入门到精通!一文搞懂RAG、Agent、MCP、Function Calling、知识库、向量数据库、知识图谱、AGI
Function Calling 是一种强大的工具,它为大语言模型提供了与外部工具和服务交互的能力,从而解决了大模型知识更新停滞的问题。然而,它的局限性在于缺乏跨模型的一致性和平台依赖性。尽管如此,Function Calling 仍然是一个重要的技术,尤其是在需要快速实现特定功能时。未来,随着技术的不断发展,我们期待看到更多能够克服这些局限性的解决方案。
2025-04-28 11:57:37
1027
原创 一文解析MCP(模型上下文协议)、A2A(智能体到智能体)
MCP(Model-Context Protocol,模型上下文协议)和A2A(Agent-to-Agent,智能体到智能体)是大模型应用中两个重要的协议,分别侧重于智能体与外部工具的交互以及智能体之间的协作。
2025-04-22 19:30:05
1201
原创 一文深度剖析视觉推理 | 什么是视觉推理能力?如何学习视觉推理能力?
视觉推理是一种能够准确回答涉及复杂推理和图像问题的能力。目标是让VLM模型在回答与图像相关的问题之前进行推理和思考。
2025-04-21 16:59:14
652
原创 大模型应用开发 | 国产开源的Graph RAG chatwiki,可以打造微信里的聊天机器人
ChatWiki是一款国产开源的知识库 AI 问答系统。系统基于大语言模型(LLM )和检索增强生成(RAG)和GraphRAG知识图谱构建,提供开箱即用的数据处理、模型调用等能力。
2025-04-15 14:08:58
937
原创 一文搞懂大模型数据标注:Label Studio、多模态标注
Label Studio是一个开源的数据标注和数据管理平台,由Human Signal开发并维护。它旨在提供一个直观、灵活且可扩展的平台,用于对各种类型的数据(如文本、图像、音频、视频等)进行高质量的标注工作。Label-Studio为计算机视觉领域提供了强大灵活的图像标注解决方案,支持图像分类、物体检测、语义分割等多种标注任务,提升标注效率和准确性。图像分类:根据图像的语义信息将不同类别的图像区分开来。这是计算机视觉中的基本任务,也是其他高层视觉任务(如图像检测、图像分割等)的基础。
2025-04-15 13:49:29
1382
原创 大模型论文 | 层次化多步奖励模型:增强大模型推理能力的新探索
本文通过引入层次化评估和高效的数据增强策略,有效提升了模型在多步推理任务中的表现,尤其在模型需要识别并纠正前序错误的场景中表现突出。随着大模型在各类生成任务中的表现不断提升,如何进一步改进它们在多步推理任务中的能力,特别是数学和逻辑推理方面,已成为大家的关注点。本文通过引入层次化评估和高效的数据增强策略,有效提升了模型在多步推理任务中的表现,尤其在模型需要识别并纠正前序错误的场景中表现突出。
2025-04-14 15:20:08
1070
原创 MCP 架构设计深度剖析 | 什么是 MCP?为什么需要 MCP?如何使用/开发 MCP?MCP 架构设计剖析
在本文中,我将从使用者的角度出发,分享关于 MCP(Model Context Protocol,模型上下文协议)的实用内容。
2025-04-14 14:42:17
1639
原创 大模型从入门到精通(四)高效训练、Adaption of LLMs、研究方向
随着BERT、GPT等预训练模型的成功应用,预训练-微调方法已经在自然语言处理、计算机视觉、多模态语言模型等领域得到广泛应用,并取得了卓越成果。为了提升模型的泛化能力,预训练模型的参数规模近年来快速增长,甚至已经达到了万亿级别。然而,如此庞大的参数量也带来了训练的困难,因此许多研究者和机构提出了许多大型模型高效训练的技术。这里主要讲解并行训练技术。其核心思想是按照 batch 维度将输入数据划分,并将数据分配给不同的 GPU 进行处理。在数据并行中,每个 GPU 存储的模型和优化器状态完全相同。
2025-04-13 10:15:00
1023
原创 大模型从入门到精通(三)预训练:数据收集和预处理、模型架构设计、预训练任务设计、模型优化与微调
数据清洗步骤主要包含Quality Filtering,De-duplication,Privacy Reduction,Tokenization。这个过程比较简单,在此不赘述。首先回顾一下LLMs的主流架构,主要分为三类:Encoder-decoder,Causal Decoder,Prefix Decoder。其中后两种都是Decoder-only的结构。这类模型只包含编码器部分,适用于分类、回归等任务,只需理解输入而不需要生成新的序列。代表模型有BERT。
2025-04-13 08:45:00
964
原创 大模型从入门到精通(二)大模型机制:Explainability、 ICL原理、知识定位/修改、CoT
随着模型和语料的扩大,大型语言模型展示了从少量上下文示例中学习的能力,这被称为上下文增强学习(ICL)。利用ICL,大型语言模型可以执行各种复杂任务,例如解决数学推理问题。ICL的基本理念是从类比中汲取经验。ICL与监督学习有一个显著的区别,就是它不需要进行参数更新,而是直接在预训练的语言模型上进行预测。ICL作为一种新的范式,具有很多天然的优势:由于演示是用自然语言编写的,因此提供了一个可解释的接口来与LLM通信。这种方法通过改变演示和模板,使得人类知识更容易融入LLM的上下文学习中。
2025-04-12 18:45:00
642
原创 大模型从入门到精通(一)大模型的涌现能力、对NLP的影响
本文是一篇关于大模型的综述文章,旨在帮助读者快速了解并深入研究大模型的核心概念和技术细节。
2025-04-12 13:43:45
747
原创 一文详解《斯坦福 AI 报告 2025》(附PDF)
这是一份影响力很大的报告,每年一期。该报告旨在追踪、整合、提炼并可视化与人工智能(AI)相关的各类数据。报告提供,帮助政策制定者、研究人员、高管、记者及公众深入了解 AI 领域的复杂性和最新动态。「斯坦福 AI 指数报告 2025」发布,与 2024 报告不同的是,该报告中,如 MMLU 差距仅剩 0.3 个百分点,HumanEval 缩小至 3.7 个百分点。,跻身全球头部模型开发机构。,与 Google 同为 8 篇。,在专利数量和论文产出方面保持全球领先。
2025-04-12 11:54:49
937
原创 大语言模型(LLM) | 使用Langchain调用集成模型上下文协议(MCP)服务
AI代理面临的挑战是向AI代理传递数据,或者换句话说,将AI代理/基于LLM的应用程序集成到外部数据源。人们一直在尝试通过利用GUI、网络浏览器和网络搜索来实现某种程度的无缝集成。所有这些途径都有优点和缺点。MCP有潜力作为一个通用接口,可以将其视为AI的虚拟/软件版USB-C。它实现了LLMs/AI代理与外部资源之间无缝、安全和可扩展的数据交换。MCP使用客户端-服务器架构,其中MCP主机(AI应用程序)与MCP服务器(数据/工具提供者)进行通信。开发人员可以使用MCP。
2025-04-11 18:56:19
782
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人