自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

老皮的博客

一位在移动开发领域苦苦前行者

  • 博客(1128)
  • 收藏
  • 关注

原创 DeepSeek新手必看!全功能详解与实操指南

对于有特定需求的用户,DeepSeek还支持上传文件建立自定义知识库。将与自己工作、学习相关的文档、资料上传后,DeepSeek就能基于这些知识为你提供更个性化、针对性更强的回答和建议。例如,企业用户可以上传公司的内部规章制度、业务资料等,让DeepSeek成为企业内部的智能助手;学生可以上传自己的学习笔记、专业文献等,帮助自己更好地学习和复习。

2025-02-05 18:05:20 23068

原创 一文带你搞懂什么是生成式人工智能(GenAI)

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

2024-11-13 11:43:32 10791

原创 工业大模型市场图谱:53个工业大模型全面梳理(通用、行业、场景大模型)看这一篇就够了!

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

2024-09-21 10:11:41 5987

原创 AI大模型之Prompt工程指南:什么是Prompt工程?Prompt工程的格式与要求

Prompt是一种基于人工智能(AI)指令的技术,通过明确而具体的指导语言模型的输出。在提示词工程中,Prompt的定义涵盖了任务、指令和角色三个主要元素,以确保模型生成符合用户需求的文本。Prompt明确而简洁地陈述了用户要求模型生成的内容。这包括在特定应用场景中,用户希望模型完成的任务或生成的文本类型。模型在生成文本时应遵循的指令是Prompt中的关键要素之一。这些指令具体规定了模型生成文本的方式,通过清晰的语言来引导模型以获得所需的输出。Prompt中还包括模型在生成文本时应扮演的角色。

2024-08-01 22:18:51 23711 1

原创 提示词工程入门指南:大模型应用的必备技能,短期刚需长期赋能

提示词工程是AI应用落地的关键技能,短期内是刚需。文章系统介绍了提示词的定义、结构化构建方法、实用技巧与策略,并提供丰富的案例库资源。通过明确目标、角色设定、上下文提供等步骤,结合思维链、格式化输出等技巧,可显著提升大模型输出质量。同时文章分析了常见错误及避坑策略,并通过实践案例展示如何应用提示词工程解决实际问题,帮助读者掌握这一AI时代必备技能。这是一篇写给AI小白的提示词入门指南,篇幅较长,请耐心看完。

2025-09-14 20:30:00 101

原创 一文解析Qwen模型,Chat、Coder、VL三大模型架构与应用对比,建议收藏!

本文详细解析了阿里Qwen三大模型的核心差异:Qwen-Chat采用标准Transformer架构专注文本生成;Qwen-Coder针对代码优化,使用专用tokenizer和结构感知训练;Qwen-VL采用多模态架构实现图文理解与生成。三者虽共享基础语言模型,但在输入设计、模块结构和预训练任务上高度定制化,分别适配不同应用场景。

2025-09-14 19:45:00 319

原创 从RAG到Self-RAG再到Agentic RAG:一张图秒懂三种检索增强生成技术的核心差异

RAG(检索增强生成)这个词是不是经常刷到?但除了基础的RAG,还有Self-RAG和Agentic RAG,是不是听得有点晕?别怕,今天用一张图带你秒懂这三者的区别,让你轻松get前沿知识!这就像一个“三好学生”,老老实实地走流程:优点:简单直接,效率高。缺点:有点死板,如果检索到的信息不准确,答案可能也会跑偏。这就像一个“爱思考”的学生,每一步都懂得自查。它最大的特点是引入了自我反思机制。优点:生成答案更可靠,减少了幻觉(hallucination)的产生。缺点:步骤更多,可能耗费更多时间和计算资源。这

2025-09-13 16:08:13 623

原创 一文详解大模型LoRA微调,从LoRA到量化技术的完整指南

1.模型权重量化将原始预训练权重量化为 4-bit 表示,同时保持关键层激活的高精度,以保证模型稳定。2.冻结量化权重量化权重保持不变,冻结所有原始参数,避免反向传播计算量激增。3.添加 LoRA 低秩适配器在关键线性层插入 LoRA 低秩矩阵,作为可训练增量。4.训练 LoRA 参数5.推理阶段结合量化权重和 LoRA 增量,支持快速推理,无需额外合并步骤。

2025-09-13 11:23:03 778

原创 基于RSSHub和n8n的AI新闻自动化工作流,零代码实现多源信息智能分析

文章介绍了如何使用RSSHub和n8n工作流程构建AI新闻汇总系统。通过RSSHub获取多源科技新闻RSS提要,使用n8n工作流过滤AI相关内容,并利用DeepSeek AI的GPT模型进行内容分析和文章摘要生成。文章提供了详细的Docker Compose部署方法,展示了企业微信频道自动推送效果,为用户提供了一套零代码的AI新闻自动化解决方案。

2025-09-12 15:10:29 780

原创 Spring AI从零构建企业级RAG系统,解决大模型幻觉问题

本文基于 Spring AI 框架,完整实现了一套企业级 RAG 系统,从技术选型、依赖配置到核心服务代码,提供了可直接落地的解决方案。该系统通过 Spring AI 简化了大模型与向量存储的集成,通过 Apache Tika 与 LangChain4j 解决了多格式文档处理与分块优化问题,最终实现了 “文档入库 - 问题检索 - 增强生成” 的全流程自动化。基于私有知识库生成回答,避免幻觉支持动态更新知识库提供可追溯的引用来源,可直接应用于企业客服、内部培训、技术支持等场景。

2025-09-12 14:48:00 393

原创 大模型实战 | 从零开始构建MoEGPT,深度解析混合专家(MoE)架构与大模型实战指南

混合专家模型(也就是MixtureofExperts,简称MoE)它属于一种稀疏激活模型呀。这种模型的核心想法就是运用好多“专家”网络去处理不同领域的任务呢,不过在任何特定的时间里呀,也就只会激活一小部分专家而已。跟传统的密集模型比起来,MoE模型有这些优势:计算效率高:模型总参数量巨大,但每个输入只激活部分参数,显著降低计算资源需求专家专业化:每个专家网络可以专注于不同领域知识如代码、数学、语言),提升模型在特定任务上的表现。

2025-09-12 14:29:05 712

原创 大模型论文 | 大模型智能体完全指南,LLM作为自主智能体与工具使用的全景解析

对人类水平人工智能(AI)的追求显著推动了自主智能体和大型语言模型(LLM)的发展。LLM现在被广泛用作决策智能体,因为它们能够解释指令、管理顺序任务并通过反馈进行适应。本综述旨在审视LLM作为自主智能体和工具使用者方面的最新进展,并涵盖七个研究问题。我们仅使用了2023年至2025年间在A*和A级会议以及Q1期刊上发表的论文。本综述对LLM智能体的架构设计原则进行了结构化分析,将其应用分为单智能体和多智能体系统,并提出了集成外部工具的策略。

2025-09-11 18:33:48 643

原创 一文解析GraphRAG索引构建,从命令行入口到工作流引擎

GraphRAG 使用 Pydantic 进行配置管理,这是一个基于类型提示的数据验证库。类型安全:基于 Python 类型提示自动验证数据类型数据转换:自动进行数据类型转换和标准化验证规则:支持复杂的验证逻辑和自定义验证器错误报告:提供详细的验证错误信息IDE 支持:完美的代码补全和类型检查支持下面是一个简化的例子,展示如何使用 Pydantic 和 YAML 实现类似 GraphRAG 的配置管理。"""存储类型枚举"""S3 = "s3""""数据库配置模型"""

2025-09-11 18:22:35 915

原创 一文详解大模型微调,从大模型微调基础概念到微调数据集

尽管全量微调可以深度改造模型能力,但需消耗大量算力且有一定技术门槛。在绝大多数场景中,若只想提升模型某个具体领域的能力,高效微调会更加合适,而目前适用于大模型的最主流高效微调方法是 LoRA。在入手学习大模型微调时,首先推荐功能层次封装层次较高的微调四套工具:unsloth、LlamaFactory、ms-SWIFT 和 ColossalAI。除此之外,也可以借助更加底层的库,如 peft、LoRA、transformer 等实现高效微调。对于初学者来说,首先使用现成工具来进行微调更为合适。

2025-09-11 17:54:31 704

原创 AI 智能体中间件,让AI智能体灵活可控,解决生产落地痛点

LangChain 1.0 的中间件,本质是给 AI 智能体装上了 “灵活的操作系统” – 过去是 “框架定死规则,开发者被动适应”,现在是 “开发者用中间件定规则,框架跟着需求走”。不管是控制上下文、保障安全,还是降本提效,中间件都能帮你用更低的成本实现,让 AI 智能体真正从 “demo” 走向 “生产”。

2025-09-10 20:25:29 985

原创 【大模型面试】大模型推理加速,投机解码技术详解与应用

投机解码通过“草稿 + 批改”的策略,在不牺牲生成质量的前提下显著提升推理效率。如何在预测精度与延迟之间找到最佳平衡?如何与批量推理结合?是否能推广到多模态等更复杂场景?这些问题为未来研究留下了空间,也让投机解码成为大模型推理优化的一个重要方向。论文链接:https://arxiv.org/pdf/2401.07851。

2025-09-10 20:02:41 840

原创 AI Agent入门到精通:大模型时代智能体的本质与应用解析

文章介绍了AI Agent概念的演变,从前大模型时代的定义(强调环境交互、智能、感知等特性)到大模型时代基于LLM的Agent三组件(规划、记忆、工具使用)。文章解析了Agent与大模型的关系(AI Agent = LLM + 角色定义 + 规划 + 工具使用 + 记忆),探讨了为什么需要Agent(解决环境隔离、执行能力、任务拆解和状态维持问题),并预告了后续将实现数据洞察Agent的实践内容。

2025-09-10 19:50:13 919

原创 大模型论文 | 大模型微调,CPI-FT框架让参数隔离提升多任务性能

识别出更新幅度排序的前。

2025-09-10 14:34:10 1005

原创 Agentic 设计模式 | 提示链(Prompt Chaining)模式详解,建议收藏

问题对于复杂任务,若只通过单一提示语进行处理,往往会使 LLM 不堪重负,导致严重的性能问题。模型认知负荷的增加会引发多种错误,如遗漏指令、丢失上下文及生成错误信息。整体式提示难以有效管理多重约束与顺序推理步骤,致使输出结果不可靠且不准确——因为 LLM 无法全面处理多层面请求的所有细节。原因提示链技术通过将复杂问题分解为一系列相互关联的子任务,提供了一种标准化解决方案。链式流程中的每个步骤都使用针对性提示来执行特定操作,显著提升了可靠性与可控性。

2025-09-10 14:05:22 531

原创 【必藏干货】多模态大模型深入解析

现在的多模态大模型,已经能帮我们搞定,“看图答题”,“多模态创作”,以及“行业质检”等问题;未来它还会融入更多模态——比如说结合“触觉数据”(类似于机器人抓握物体时的力度),“生物信号”(就如同心率、脑电波那样),在康复医疗、智能家居等领域发挥出更大的作用。对于普通用户而言,无需纠结于技术方面的细节,只需牢记“按需选择”即可。在日常创作时,可选择GPT-4V、文心一言4.0这类,“较为轻便且易于使用的类型”;而在企业落地方面,则应选择盘古、通义千问这类,“与行业相适配的类型”。

2025-09-09 19:53:19 1032

原创 大模型训练全流程:从预训练到PPO对齐的完整实战指南

本文详细介绍了大模型训练全流程,包括预训练、继续预训练、指令微调(SFT)、偏好对齐(DPO/ORPO/KTO)和强化学习对齐(PPO)。提供了基于Hugging Face/TRL/PEFT和ms-swift的代码实现,介绍了LoRA/QLoRA技术、数据格式与chat模板使用,以及评测部署方法。以Qwen模型为例,适用于其他大模型,适合不同GPU配置的学习者参考。说明。

2025-09-09 18:01:49 1025

原创 2025年大模型面试题解析,Flux LoRA模型的完整训练流程

本文详细介绍了Flux LoRA模型的完整训练流程,包括数据集准备(10-30张高质量图像)、环境搭建(ComfyUI+依赖库)、训练参数配置及测试调优技巧。同时解析了Flux模型采用Transformer架构(MM-DiT)相比U-Net的优势,以及CLIP与T5编码器的协同工作机制。一、准备阶段最少 10–20 张图像,高质量、多角度、多场景,可考虑最多不超过 30 张,过多会导致 LoRA 学习模糊。分辨率 ≥ 1024×1024,建议统一裁剪为正方形(1:1),主体居中。

2025-09-09 14:28:46 664

原创 大模型论文 | 大语言模型Agent强化学习

论文(The Landscape of Agentic Reinforcement Learning for LLMs: A Survey)绘制了大语言模型agent强化学习的全景图,展示了模型如何通过跨时间步骤的行动来学习。该综述涵盖了500多项工作,将其组织成一个包含能力和应用两部分的完整地图。问题背景:传统大语言模型训练存在根本缺陷:仅对单个回答进行一次奖励,然后停止学习。但现实任务需要:•多步骤操作•部分信息处理•影响后续结果的关键决策agent强化学习框架:论文将这种设定形式化为一个agent系统

2025-09-09 14:04:28 689

原创 一文深入解析AI智能体与MCP(模型上下文协议)

本文深入解析AI智能体的ReAct模式与MCP协议的区别。AI智能体具备自主性、推理规划和工具使用能力,但面临记忆限制;MCP提供标准化通信和持久上下文管理,解决记忆碎片化问题。两者结合可构建更强大、一致、适应性强的AI系统,是未来大模型应用架构的关键技术。和。这两个术语听起来很相似,甚至有重叠之处,但它们解决的是完全不同的问题。今天,我将深入剖析这两个概念:它们是什么,各自的优势在哪里,以及为什么理解它们的区别对我们构建更持久的 AI 系统至关重要。1、AI 智能体:思考、行动、重复。

2025-09-05 14:31:00 775

原创 【大模型应用开发】上下文工程重构提示词思维,系统学习AI上下文的知识体系!

文章介绍了"Context-Engineering"的GitHub项目,这是系统化的上下文工程学习资源。通过生物学隐喻将知识分为原子→分子→细胞→器官→神经网络系统→神经与语义场论等层次,提供完整知识体系。相比提示词工程,上下文工程更注重构建完整AI应用环境,适合AI开发者、产品经理和提示词工程师学习,帮助从"术"上升到"道"的层面。本文介绍一个 GitHub项目:Context-Engineering(https://github.com/davidkimai/Context-Engineering)

2025-09-05 14:06:02 633

原创 【GraphRAG】一文详解GraphRAG的工作流程,解决传统RAG五大痛点

将图算法应用于知识图谱来识别紧密连接的节点集群。对于每个检测到的节点集群,LLM都会生成一个简洁的摘要,其中包含关键实体、关系和主题。高级别摘要描述总体主题,而低级别摘要则突出细节。这种层次结构确保用户可以根据查询、探索到不同粒度级别的信息。

2025-09-05 13:45:52 638

原创 AI Agent开发实战:从零开始构建高考数据分析智能助手

本文通过高考数据分析案例,详细介绍了AI Agent的开发实践流程。文章采用手写代码、LangChain框架和QwenAgent框架三种方式实现了一个智能助手,能够解析用户自然语言查询、生成SQL语句、查询数据并进行分析。实践涉及RAG检索增强、工具调用、ReAct等核心技术,展示了如何构建能够处理复杂数据查询的智能助手系统,适合初学者了解AI Agent开发全流程。

2025-09-04 21:12:42 903

原创 智能体式RAG详解:AI智能体如何赋能大模型检索增强生成

智能体式RAG是一种由AI智能体驱动的RAG方法。它通过利用智能体来管理任务、从多个来源获取信息并处理更复杂的工作流,从而增强了标准的RAG流程。

2025-09-04 21:00:44 812

原创 一文提升大模型性能,并行化、路由、工具调用与函数调用技术详解

路由是根据输入特征****动态选择路径或流程的概念。选择不同的提示词模板选择不同的模型或工具导向业务逻辑处理器工具调用允许语言模型(LLM)决定何时以及如何使用外部函数(称为工具)。语言模型不再仅仅生成文本,还能通过识别用户查询需要实际计算或业务逻辑时,动态调用Python函数。进行API调用或执行函数动态集成业务逻辑执行实际操作而非仅仅生成虚构答案函数调用允许语言模型建议调用特定函数,并附上从用户查询中提取的特定参数。在OpenAI的API中(如gpt-4-0613及更新版本),这被称为。

2025-09-04 20:43:37 720

原创 Python+Ollama+BGE-M3构建本地智能知识库系统,小白也能轻松上手

BGE-M3因其在多语言、多功能和多粒度方面的能力而得名。BGE-M3 能够支持 100 多种语言,为多语言和跨语言检索任务树立了新的标杆。它在单一框架内执行密集检索、多向量检索和稀疏检索的独特能力,使其成为各种信息检索(IR)应用的理想选择。多语言文本嵌入密集向量检索多向量检索稀疏向量检索多任务学习本文详细介绍了如何使用 Python + Ollama + BGE-M3 构建一个完整的本地知识库系统。易于部署:全部组件都可以在本地运行,无需网络连接多格式支持。

2025-09-03 18:08:07 424

原创 5大实战技巧:让Dify知识库准确率从60%提升到90%+,告别AI胡话

本文介绍5个优化Dify知识库RAG系统的核心技巧:混合检索结合向量与关键词检索提高召回率;重排序技术确保最相关内容优先;文档预处理提升知识质量;定制化提示词使回答更专业;持续优化建立数据驱动闭环。通过这些方法,可将知识库准确率从60%提升至90%以上,解决AI回答不准确问题,打造高效智能知识助手。

2025-09-03 17:57:05 1191

原创 MCP协议入门:让大模型拥有链接工具、解决问题能力的核心技术

MCP(Model Context Protocol)是Anthropic发布的模型上下文协议,作为连接AI模型与外部工具的桥梁,使模型能够调用工具、获取数据、执行任务。相比传统API,MCP采用统一标准接口,大幅提升开发效率。它由mcp host(用户交互的AI应用)、mcp client(通信连接组件)和mcp serve(开发者创建的服务)组成。目前已有多个MCP服务市场,为不同需求提供丰富工具,显著增强AI模型的问题解决能力。

2025-09-03 17:42:31 741

原创 小白也能学会!Dify+RAGFlow集成提升大模型知识检索能力

本文详细介绍了如何将Dify与RAGFlow集成使用,打造更强的大模型知识检索系统。通过在RAGFlow创建知识库并获取API KEY,然后在Dify中设置外部知识库API连接,实现了两个工具的优势互补。这种集成方式充分发挥了Dify的工作流能力和RAGFlow出色的文档解析与知识召回功能,使知识检索更加准确可靠。教程包含完整操作步骤和测试验证,为开发者提供了一套实用的智能体构建解决方案。在智能体构建和工作流等模型应用编排平台中,dify,ragflow、n8n和目前开源的Coze这几个工具各有其优势。

2025-09-02 17:35:28 924

原创 【大模型必收藏】RAG安全漏洞揭秘:间接Prompt注入攻击全解析

简单讲,RAG 就是:在回答前先去拉取外部知识,再把这些文本作为上下文喂给大模型,由模型在此基础上生成更贴近事实的输出。它把“模型参数里的通用知识”和“企业自己的私有知识”拼在一起,降低幻觉、提升回答的准确性。图 1:RAG 参考架构 [3]办公与协作:邮件、文档库(如 Google Drive/SharePoint)、沟通工具(如 Teams/Slack)网站与公开内容:内外部网站、Wiki/门户页业务数据:企业数据库/数据仓库(OLTP/OLAP)、日志与指标库企业应用。

2025-09-02 17:14:21 989

原创 一文LangChain与LangGraph提示工程全解析,建议收藏学习

本文详细介绍了使用LangChain和LangGraph进行提示工程,构建AI智能代理的核心技术。涵盖基础模板、智能链构建、高级编排、多代理协作及生产实践,通过代码示例展示从简单客服到复杂分析工具的开发方法,帮助开发者掌握现代AI应用开发,打造能处理多步骤推理和动态决策的智能系统。AI 的世界正在飞速演变,从简单的问答系统升级成了复杂、多步骤推理的智能代理。

2025-09-02 15:54:31 761

原创 大模型RAG | 一文搞懂RAG系统的查询路由技术与实现

查询路由就像一个智能决策中心,在收到用户问题后,它会先停下来思考,而不是直接盲目地在所有资料里进行“大海捞针”。它根据用户问题的类型,决定下一步的路径怎么走:是从内部数据库A查找?还是从外部知识库B获取信息?甚至是直接上网搜索。这个预检索的优化策略,就是为了确保系统从一开始就走在正确的道路上,大大提升了回答的精准度和效率。总之,查询路由(Query Routing)是在构建高级RAG系统比较常见的预检索优化策略。上一篇文章中提到的优化策略查询翻译(Query Translation)

2025-08-29 18:51:17 826

原创 LangGraph进阶之路:构建高效AI工作流,开发大模型应用书籍实战指南

本文详细介绍LangGraph框架的核心特点与应用场景,对比分析其与Dify、Coze、n8n等平台的差异。通过实战案例,展示如何使用LangGraph构建AI工作流生成大模型应用开发书籍,包括环境配置、节点设计、状态管理和内容生成等关键步骤。文章强调LangGraph在处理复杂AI工作流、多智能体协作和状态管理方面的优势,为开发者提供了从理论到实践的完整指南。

2025-08-29 18:31:58 915

原创 大模型论文 | AgentFly:重塑Agent,无需微调LLM,如我们一样的记忆和经验持续学习

近年来,大型语言模型(LLM)智能体已成为AI领域的热点,它们能自主使用工具、进行多步推理,完成复杂任务,如深度研究、代码生成、多轮对话等。然而,现有的LLM智能体面临两大困境:一是依赖,缺乏灵活性,无法适应新环境;二是通过来实现适应,虽然灵活但成本极高,且容易发生“灾难性遗忘”,不适合持续学习。本论文正是针对这一挑战提出的创新解决方案。作者受人类记忆机制启发,提出了一个,智能体通过不断积累成功和失败的经验(存入“案例库”),在遇到新任务时快速检索相似案例指导决策,从而实现持续进步——。

2025-08-28 18:01:15 993

原创 AI Agent | 三大主流Agent的工具调用、三大核心工具的调用机制

Agent工具调用是AI从"对话助手"进化为"智能执行者"的关键转折点。现代Agent基于→→→,这个循环使AI能够像人类一样推理决策、调用工具、观察结果并持续优化。GPT-5在工具调用精度上达到96.7%(τ2-bench),标志着Agent从"能调用工具"升级为"精准调用工具"的质的飞跃。

2025-08-27 17:27:57 787

原创 大模型RAG关键技术详解 | 什么是问题改写?问题改写在 RAG 中的常见方法!

问题改写是 RAG 系统中不可或缺的“桥梁”技术,它连接了“用户语言”与“知识库语言”,显著提升了检索的相关性和系统整体性能。掌握并合理应用问题改写方法,是构建高效、智能 RAG 应用的关键一步。

2025-08-27 17:21:13 842

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除