Python数据工程师必备:十大内置模块全解析

Python是数据工程师常用的编程语言之一。作为数据工程师,你应该熟悉许多Python库。不过,Python的标准库本身就包含了众多功能强大的模块,覆盖了文件操作、数据序列化、文本处理等各种相关任务。

10 Built-In Python Modules Every Data Engineer Should Know

本文整理了一些对数据工程尤其有用的内置Python模块,主要包括以下几类:

  • 文件与目录管理

  • 数据处理与序列化

  • 数据库交互

  • 文本处理

  • 日期与时间操作

  • 系统交互

让我们开始吧。


数据工程必备的内置Python模块 | 作者自制配图


1. os

os模块是与操作系统交互的首选工具。它可以让你执行诸如文件路径操作、目录管理、环境变量处理等多种任务。

使用os模块,你可以完成如下数据工程相关操作:

  • 自动创建和删除目录,用于临时或输出数据存储

  • 在不同目录间整理大型数据集时,灵活处理文件路径

  • 管理环境变量,用于数据管道中的配置设置

Corey Schafer的教程《OS Module - Use Underlying Operating System Functionality》全面介绍了os模块的所有功能。


2. pathlib

pathlib模块为文件系统路径的处理提供了更现代、面向对象的方法。它允许你以直观、易读的语法轻松操作文件和目录路径,因此非常适合文件管理任务。

pathlib模块在以下数据工程任务中非常实用:

  • 简化大数据集的遍历和验证过程

  • 在ETL(提取、转换、加载)流程中,便捷管理文件路径的移动或复制

  • 保证跨平台兼容性,尤其适合多环境的数据工程工作流

以下两个教程涵盖了pathlib模块的基础用法:

  • 《How To Navigate the Filesystem with Python’s Pathlib》

  • 《Organize, Search, and Back Up Files with Python’s Pathlib》


3. shutil

shutil模块用于执行常见的高级文件操作,包括复制、移动及删除文件和目录。它非常适合需要操作大型数据集或多文件的任务。

在数据工程项目中,shutil模块可用于:

  • 高效地在不同存储位置间移动或复制大型数据集

  • 自动清理数据处理后产生的临时文件和目录

  • 在数据处理或分析前,对关键数据集进行备份

《shutil: The Ultimate Python File Management Toolkit》是关于shutil模块的全面教程。


4. csv

csv模块是处理CSV文件的必备工具,CSV是一种常见的数据存储与交换格式。该模块提供了用于读取和写入CSV文件的工具,并支持定制不同的CSV格式。

使用csv模块,你可以完成以下任务:

  • 在ETL管道中,解析与处理大型CSV文件

  • 将CSV数据转换为其他格式,如JSON或数据库表

  • 将处理后的数据重新写入CSV格式,供下游应用使用

《CSV Module - How to Read, Parse, and Write CSV Files》是学习csv模块的良好参考。


5. json

内置的json模块是处理JSON数据的首选工具,尤其常见于与Web服务和API交互场景。它支持Python对象与JSON字符串之间的序列化与反序列化,使得应用程序与外部系统之间的数据交换变得简单。

你可以用json模块来:

  • 无缝地将API响应转换为Python对象以便进一步处理

  • 以结构化格式存储配置信息或元数据

  • 处理大数据应用中常见的复杂嵌套数据结构

《Working with JSON Data using the json Module》详细介绍了如何在Python中操作JSON数据。


6. pickle

pickle模块用于将Python对象序列化和反序列化为二进制格式。它特别适合将复杂的数据结构(如列表、字典或自定义对象)保存到磁盘,之后再重新加载。

pickle模块在以下任务中非常有用:

  • 缓存已转换的数据,加速数据管道中的重复任务

  • 持久化训练好的模型或数据转换步骤,实现可复现性

  • 在处理阶段之间存储和重新加载复杂的配置或数据集

《Python Pickle Module for saving objects (serialization)》是一篇简明实用的pickle模块教程。


7. sqlite3

sqlite3模块为SQLite数据库提供了简洁的操作接口。SQLite是一款轻量级、独立的数据库,非常适合无需数据库服务器即可实现结构化数据存储的项目。

你可以用sqlite3模块来:

  • 在将ETL管道扩展到完整数据库系统前进行原型设计

  • 在数据处理过程中存储元数据、日志信息或中间结果

  • 无需部署数据库服务器即可快速查询和管理结构化数据

《A Guide to Working with SQLite Databases in Python》是入门SQLite数据库的全面教程。


8. datetime

处理日期和时间在实际数据集操作中非常常见。datetime模块帮助你在应用程序中管理日期和时间数据。

它提供了处理日期、时间、时间间隔的工具,并支持日期字符串的格式化与解析,适用于:

  • 解析和格式化日志或事件数据中的时间戳

  • 在处理实际数据集时管理日期范围和计算时间间隔

《Datetime Module - How to work with Dates, Times, Timedeltas, and Timezones》是学习datetime模块的优秀教程。


9. re

re模块为正则表达式操作提供了强大工具,对于文本处理至关重要。它可以基于复杂模式搜索、匹配和处理字符串,是数据清洗、验证和转换任务中不可或缺的利器。

你可以用re模块来:

  • 从日志、原始数据或非结构化文本中提取特定模式

  • 在ETL流程中验证数据格式,如日期、邮箱或电话号码

  • 清洗原始文本数据,便于后续分析

《re Module - How to Write and Match Regular Expressions (Regex)》详细介绍了如何深入使用内置re模块。


10. subprocess

subprocess模块是一款强大的工具,可用于在Python脚本中运行Shell命令并与系统Shell交互。

它对于自动化系统任务、调用命令行工具或获取外部进程输出非常关键,适用于:

  • 自动执行Shell脚本或数据处理命令

  • 捕获命令行工具的输出,集成到Python工作流中

  • 编排涉及多种工具和命令的复杂数据处理管道

《Calling External Commands Using the Subprocess Module》介绍了如何入门subprocess模块。


总结

希望本次对Python数据工程常用内置模块的梳理对你有所帮助。

这些模块可以成为你数据工程工具箱中的得力助手,提供了无需依赖外部库即可完成多种任务的基础功能。

如果你还想了解更多适合数据工程的Python库,推荐阅读《7 Python Libraries Every Data Engineer Should Know》。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值