题目:输入某二叉树的前序遍历序列和中序遍历序列的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不包含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6}则重建出如下的二叉树
思路:
二叉树的重建思路都是类似的,首先要知道两个序列,其中必定有一个是中序遍历序列,另一个可以是其他的序列。就这道题来说,我们可以通过先序序列知道二叉树的根节点为1,在中序序列里面1的左边是左子树的所有结点,1的右边是右子树的所有结点,这样就可以得到一棵树的结构。用递归的方法,求出左右子树的根节点,分别为根节点的左右孩子,递归下去就可以求得重建好的二叉树,并且将根节点的指针返回。
代码:
#include <iostream>
struct BinaryTreeNode {
int m_nValue;
BinaryTreeNode* m_pLeft;
BinaryTreeNode* m_pRight;
};
BinaryTreeNode* Construct(int *preorder, int* inorder, int length)
{
if (preorder == NULL || inorder == NULL || length <= 0)
return NULL;
return ConstructCore(preorder, preorder + length - 1, inorder, inorder + length - 1);
}
BinaryTreeNode* ConstructCore(int* startPreorder, int* endPreorder, int* startInorder, int* endInorder)
{
//前序遍历的第一个数字是根节点的值
int rootValue = startPreorder[0];
BinaryTreeNode* root = new BinaryTreeNode;
root->m_nValue = rootValue;
root->m_pLeft = root->m_pRight = NULL;
if (startPreorder == endPreorder) {
if (startInorder == endInorder && *startPreorder == *startInorder)
return root;
else
throw std::exception("Invalid input.");
}
//在中序遍历中找到根结点的值
int* rootInorder = startInorder;
while (rootInorder<=endInorder && *rootInorder!=rootValue)//总觉得这里有点问题,这里的“=”有点疑问
{
++rootInorder;
}
if (rootInorder == endInorder && *rootInorder != rootValue)
throw std::exception("Invalid input.");
int leftLength = rootInorder - startInorder;
int* leftPreorderEnd = startPreorder + leftLength;
if (leftLength > 0)
{
//构件左子树,如果上面括号里取等于0,说明左子树不存在
root->m_pLeft = ConstructCore(startPreorder + 1, leftPreorderEnd, startInorder, rootInorder - 1);
}
if (leftLength < endPreorder - startPreorder);
{
//构建右子树,如果上面括号里取等号,那么说明右子树不存在
root->m_pRight = ConstructCore(leftPreorderEnd + 1, endPreorder, rootInorder + 1, endPreorder);
}
return root;
}
复习:这道题思路比较简单,主要是考虑代码的鲁棒性,以及递归函数的写法,需要多练习几次,掌握好递归的写法。
二刷代码:
struct BinaryTreeNode
{
int m_nValue;
BinaryTreeNode* m_pLeft;
BinaryTreeNode* m_Right;
};
BinaryTreeNode* Construct(int* preorder, int* inorder, int length)
{
if (preorder == nullptr || inorder == nullptr || length <= 0)
return nullptr;
return ConstructCore(preorder, preorder + length - 1, inorder, inorder + length - 1);
}
BinaryTreeNode* ConstructCore(int* startPreorder, int* endPreorder, int* startInorder, int* endInorder)
{
int rootValue = startInorder[0];
BinaryTreeNode* root = new BinaryTreeNode();
root->m_nValue = rootValue;
root->m_pLeft = root->m_Right = nullptr;
if (startPreorder == endPreorder)
{
if (startInorder == startPreorder && *startInorder == *startPreorder)
return root;
else
throw exception("Invalid input");
}
//在中序遍历序列中找到根节点的值
int* rootInorder = startInorder;
while (rootInorder<=endInorder&&*rootInorder!=rootValue)
{
++rootInorder;
}
if (rootInorder == endInorder && *rootInorder != rootValue)
throw exception("Invalid input");
int leftLength = rootInorder - startInorder;
int* leftPreorderEnd = startInorder + leftLength;
if (leftLength > 0)
{
root->m_pLeft = ConstructCore(startPreorder + 1, leftPreorderEnd, startInorder, rootInorder - 1);
}
if (leftLength < endPreorder - startPreorder)
{
root->m_Right = ConstructCore(leftPreorderEnd + 1, endPreorder, rootInorder + 1, endInorder);
}
return root;
}