LeetCode53——最大子序列的和

本文深入探讨了寻找具有最大和的连续子数组问题,并通过动态规划方法给出了解决方案。示例中,输入数组[-2,1,-3,4,-1,2,1,-5,4],输出为6,即连续子数组[4,-1,2,1]的和。文章提供了详细的代码实现,展示了如何记录以每个元素结尾的最大子序列和。
摘要由CSDN通过智能技术生成

题目:

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

思路:

动态规划的方法,记录以每个元素结尾的最大子序列的和,然后从中去找最大的值即可。

代码:

class Solution {
public:
	int maxSubArray(vector<int>& nums) {
		int len = nums.size();
        if(len==1)
            return nums[0];
		int result =nums[0];
		vector<int>dp(len);
		dp[0] = nums[0];
		for (int i = 1; i < len; i++)
		{
			if (nums[i] + dp[i - 1] > nums[i])
			{
				dp[i] = nums[i] + dp[i - 1];
				
			}
			else
			{
				dp[i] = nums[i];
			}
		}

		for (int i = 0; i < len; i++)
		{
			result = max(result, dp[i]);
		}
		return result;




	
	}
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值