差分
差分与前缀和是一对互逆的操作,常用于处理数组区间更新问题。差分数组能高效完成区间增减操作,而前缀和则用于还原最终结果。
题目
输入一个长度为 n 的整数序列。接下来输入 m 个操作,每个操作包含三个整数 l , r, c,表示将序列中 [l, r]之间的每个数加上c。请你输出进行完所有操作后的序列。
如果每次都遍历[l,r],复杂度过高。我们可以构造a的差分数组b,使得a数组是b数组的前缀和。
差分数组的核心原理
给定原数组 a,其差分数组 b 定义为:
- b [ 1 ] = a [ 1 ] b[1] = a[1] b[1]=a[1]
-
b
[
i
]
=
a
[
i
]
−
a
[
i
−
1
]
b[i] = a[i] - a[i-1]
b[i]=a[i]−a[i−1](
i
>
1
i > 1
i>1)
(a是b的前缀和: a [ i ] = a [ i − 1 ] + b [ i ] a[i] = a[i - 1] + b[i] a[i]=a[i−1]+b[i]( i > 1 i > 1 i>1))
原数组可通过前缀和还原:
a
[
i
]
=
∑
k
=
1
i
b
[
k
]
a[i] = \sum_{k=1}^{i} b[k]
a[i]=∑k=1ib[k]
区间更新的高效实现
对原数组区间 [l, r] 增加 c,只需修改差分数组的两个位置:
- b [ l ] + = c b[l] \mathrel{+}= c b[l]+=c
- b [ r + 1 ] − = c b[r+1] \mathrel{-}= c b[r+1]−=c
该操作的时间复杂度为 O ( 1 ) O(1) O(1),相比直接遍历区间 O ( n ) O(n) O(n) 更高效。例如:
- 初始差分数组
b为全零 - 输入
a[i]时视为执行单点操作insert(i, i, a[i]) - 执行
m次区间操作后,通过前缀和还原结果
详细解释

- b数组如图,我们给
b[l] + c,b[r + 1] - c。由于a[i] = b[1] + b[2] +...+ b[i],b[l] + c后,得到a[l] = b[1] + b[2] +...+ (b[l] + c),a[n] = b[1] + b[2] +...+ (b[l] + c) + ... + b[n],所以a[l]...a[n]都加了c,但是我们要求a[l,r]之间的每个数加上c,所以b[r + 1] - c后,得到a[r + 1] = b[1] + b[2] +...+ (b[l] + c) +... + (b[r + 1] - c),a[n] = b[1] + b[2] +...+ (b[l] + c) + ... + (b[r + 1] - c) + ...+ b[n],a[r + 1]...a[n]都减了c,加减抵消。 - 我们要构造
b数组,假设a数组初始化为0,b数组也就全为0,我们在读入a数组时可以理解为对全为0的a数组进行这样的操作:在区间[1, 1]加上a[1],在[2, 2]加上a[2]…在[n, n]加上a[n],这样就能得到数组b。最后要输出数组a,只用求一遍前缀和就行。就不需要利用a数组来按照差分公式计算数组b了。 - 其实用差分公式计算数组
b对时间复杂度并没有什么影响,只是巧妙地利用了一下insert函数而已。
完整代码实现
#include<iostream>
using namespace std;
const int N = 100010;
int n, m;
int a[N], b[N];
void insert(int l, int r, int c)
{
b[l] += c;
b[r + 1] -= c;
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
// 初始化差分数组,b[i] = a[i] - a[i - 1]也是可以的
insert(i, i, a[i]);
}
while(m--)
{
int l, r, c;
scanf("%d%d%d", &l, &r, &c);
insert(l, r, c); // 执行区间更新
}
// 计算前缀和还原结果
for(int i = 1; i <= n; i++)
{
a[i] = a[i - 1] + b[i];
printf("%d ", a[i]);
}
return 0;
}
另一种实现
也可以不需要数组a,节省空间
#include<iostream>
using namespace std;
const int N = 100010;
int n, m;
int b[N];
void insert(int l, int r, int c)
{
b[l] += c;
b[r + 1] -= c;
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++)
{
int num;
scanf("%d", &num);
// 初始化差分数组,b[i] = a[i] - a[i - 1]也是可以的
insert(i, i, num);
}
while(m--)
{
int l, r, c;
scanf("%d%d%d", &l, &r, &c);
insert(l, r, c); // 执行区间更新
}
// 计算前缀和还原结果
for(int i = 1; i <= n; i++)
printf("%d ", b[i] += b[i - 1]);
return 0;
}
算法优势分析
- 时间复杂度优化:将 O ( m n ) O(mn) O(mn) 的暴力更新降为 O ( n + m ) O(n+m) O(n+m)
- 空间效率:仅需额外 O ( n ) O(n) O(n) 空间存储差分数组
- 通用性:适用于静态数组多次区间修改的场景
注意事项
- 数组下标通常从1开始以避免边界处理
- 差分数组初始化需通过 n n n 次单点操作完成
- 最终结果需通过严格的前缀和计算获得
差分矩阵
在算法竞赛和数据处理中,经常会遇到需要对矩阵的子矩阵进行批量增减操作的情况。如果直接遍历子矩阵的每个元素进行修改,时间复杂度会很高 O ( q n m ) O(qnm) O(qnm)。差分矩阵技术能将时间复杂度优化到 O ( n m + q ) O(nm + q) O(nm+q),显著提升效率。
题目
输入一个 n行 m列的整数矩阵,再输入 q个操作,每个操作包含五个整数 x1 ,y1 ,x2 ,y2 ,c,其中 (x1,y1)和 (x2,y2)表示一个子矩阵的左上角坐标和右下角坐标。每个操作都要将选中的子矩阵中的每个元素的值加上 c。请你将进行完所有操作后的矩阵输出。
如果每次都遍历[x1, y1],[x2, y2],复杂度过高。我们可以构造a的差分数组b,使得a数组是b数组的前缀和。
差分矩阵的核心思想
差分矩阵基于前缀和与差分的概念。对于原矩阵a,构造其差分矩阵b,使得a[i][j]等于b矩阵从(1,1)到(i,j)的前缀和。通过维护差分矩阵b,可以高效实现区域增减操作。
对子矩阵(x1,y1)-(x2,y2)增加c的操作,转化为对差分矩阵b的四个关键位置修改:
- b[x1][y1] += c
- b[x2+1][y1] -= c
- b[x1][y2+1] -= c
- b[x2+1][y2+1] += c
这种四角修改法确保只有目标子矩阵内的元素会正确增加c值。

b数组如图,我们给b[x1, y1] + c,b[x1, y2 + 1] - c,b[x2 + 1, y1] - c,b[x2 + 1, y2 + 1] + c。由于a[i]是前缀和,b[x1, y1] + c后,蓝色边框区域在求前缀和时都会加c,但是我们要求黑色区域的每个数加上c,所以b[x1, y2 + 1] - c,b[x2 + 1, y1] - c后,两块红色边框区域都减了c,绿色区域被减了一次,但是红色区域被减了两次,b[x2 + 1, y2 + 1] + c后,加减抵消。- 我们要构造
b数组,假设a数组初始化为0,我们在读入a数组时可以理解为在(i,j),(i,j)这个区域加上a[i,j],这样就能得到数组b。最后要输出数组a,只用求一遍前缀和就行。
实现步骤
初始化差分矩阵时,可以将每个元素的初始值视为在单点(i,j)到(i,j)的子矩阵上增加a[i][j]的操作:
void insert(int x1, int y1, int x2, int y2, int c) {
b[x1][y1] += c;
b[x2+1][y1] -= c;
b[x1][y2+1] -= c;
b[x2+1][y2+1] += c;
}
// 初始化差分矩阵
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
insert(i, j, i, j, a[i][j]);
}
}
处理完所有操作后,通过二维前缀和计算恢复最终矩阵:
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
a[i][j] = a[i-1][j] + a[i][j-1] - a[i-1][j-1] + b[i][j];
}
}
二维前缀和大家可以去看看我的这篇文章 -> 任意门
复杂度分析
构造初始差分矩阵:
O
(
n
m
)
O(nm)
O(nm)
处理q次操作:
O
(
q
)
O(q)
O(q)
计算最终矩阵:
O
(
n
m
)
O(nm)
O(nm)
总时间复杂度:
O
(
n
m
+
q
)
O(nm + q)
O(nm+q)
相比直接暴力修改的 O ( q n m ) O(qnm) O(qnm)时间复杂度,差分矩阵在q较大时有显著优势。
应用场景
这种技术适用于:
- 大规模矩阵区域修改
- 离线处理批量更新
- 需要多次查询最终结果的场景
特别在图像处理、数值模拟、游戏开发等领域有广泛应用。
代码实现示例
完整实现参考以下代码框架:
#include <iostream>
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N], b[N][N];
void insert(int x1, int y1, int x2, int y2, int c) {
b[x1][y1] += c;
b[x2+1][y1] -= c;
b[x1][y2+1] -= c;
b[x2+1][y2+1] += c;
}
int main() {
scanf("%d%d%d", &n, &m, &q);
// 初始化差分矩阵
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d", &a[i][j]), insert(i,j,i,j,a[i][j]);
// 处理操作
while(q--) {
int x1,y1,x2,y2,c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
insert(x1,y1,x2,y2,c);
}
// 计算最终矩阵
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
//一边计算,一边打印
a[i][j] = a[i-1][j] + a[i][j-1] - a[i-1][j-1] + b[i][j];
printf("%d ", a[i][j]);
}
printf("\n");
}
return 0;
}
扩展思考
差分矩阵思想可以推广到更高维度,如三维空间的立方体区域修改。核心仍是正确设置差分边界点的增减操作,使修改只影响目标区域。
掌握差分技巧不仅能提升算法效率,也能培养对数据结构的深刻理解。在实际应用中,结合具体问题灵活运用差分思想,往往能创造出更优的解决方案。
算法内容来自AcWing算法基础课,感谢AcWing老师的详细讲解。
1046

被折叠的 条评论
为什么被折叠?



