差分 & 差分矩阵

差分

差分与前缀和是一对互逆的操作,常用于处理数组区间更新问题。差分数组能高效完成区间增减操作,而前缀和则用于还原最终结果。

题目

输入一个长度为 n 的整数序列。接下来输入 m 个操作,每个操作包含三个整数 l , r, c,表示将序列中 [l, r]之间的每个数加上c。请你输出进行完所有操作后的序列。
如果每次都遍历[l,r],复杂度过高。我们可以构造a的差分数组b,使得a数组是b数组的前缀和。

差分数组的核心原理

给定原数组 a,其差分数组 b 定义为:

  • b [ 1 ] = a [ 1 ] b[1] = a[1] b[1]=a[1]
  • b [ i ] = a [ i ] − a [ i − 1 ] b[i] = a[i] - a[i-1] b[i]=a[i]a[i1] i > 1 i > 1 i>1
    (a是b的前缀和: a [ i ] = a [ i − 1 ] + b [ i ] a[i] = a[i - 1] + b[i] a[i]=a[i1]+b[i] i > 1 i > 1 i>1))

原数组可通过前缀和还原:
a [ i ] = ∑ k = 1 i b [ k ] a[i] = \sum_{k=1}^{i} b[k] a[i]=k=1ib[k]

区间更新的高效实现

对原数组区间 [l, r] 增加 c,只需修改差分数组的两个位置:

  • b [ l ] + = c b[l] \mathrel{+}= c b[l]+=c
  • b [ r + 1 ] − = c b[r+1] \mathrel{-}= c b[r+1]=c

该操作的时间复杂度为 O ( 1 ) O(1) O(1),相比直接遍历区间 O ( n ) O(n) O(n) 更高效。例如:

  • 初始差分数组 b 为全零
  • 输入 a[i] 时视为执行单点操作 insert(i, i, a[i])
  • 执行 m 次区间操作后,通过前缀和还原结果

详细解释

示意图

  • b数组如图,我们给b[l] + cb[r + 1] - c。由于a[i] = b[1] + b[2] +...+ b[i]b[l] + c后,得到a[l] = b[1] + b[2] +...+ (b[l] + c)a[n] = b[1] + b[2] +...+ (b[l] + c) + ... + b[n],所以a[l]...a[n]都加了c,但是我们要求a[l,r]之间的每个数加上 c,所以b[r + 1] - c后,得到a[r + 1] = b[1] + b[2] +...+ (b[l] + c) +... + (b[r + 1] - c)a[n] = b[1] + b[2] +...+ (b[l] + c) + ... + (b[r + 1] - c) + ...+ b[n]a[r + 1]...a[n]都减了c加减抵消
  • 我们要构造b数组,假设a数组初始化为0b数组也就全为0,我们在读入a数组时可以理解为对全为0a数组进行这样的操作:在区间[1, 1]加上a[1],在[2, 2]加上a[2]…在[n, n]加上a[n],这样就能得到数组b。最后要输出数组a,只用求一遍前缀和就行。就不需要利用a数组来按照差分公式计算数组b了。
  • 其实用差分公式计算数组b对时间复杂度并没有什么影响,只是巧妙地利用了一下insert函数而已。

完整代码实现

#include<iostream>
using namespace std;
const int N = 100010;

int n, m;
int a[N], b[N];

void insert(int l, int r, int c) 
{
    b[l] += c;
    b[r + 1] -= c;
}

int main() 
{
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++) 
    {
        scanf("%d", &a[i]);
        // 初始化差分数组,b[i] = a[i] - a[i - 1]也是可以的
        insert(i, i, a[i]); 
    }

    while(m--) 
    {
        int l, r, c;
        scanf("%d%d%d", &l, &r, &c);
        insert(l, r, c); // 执行区间更新
    }

    // 计算前缀和还原结果
    for(int i = 1; i <= n; i++)
     {
        a[i] = a[i - 1] + b[i];
        printf("%d ", a[i]);
    }
	
    return 0;
}

另一种实现

也可以不需要数组a,节省空间

#include<iostream>
using namespace std;
const int N = 100010;

int n, m;
int b[N];

void insert(int l, int r, int c) 
{
    b[l] += c;
    b[r + 1] -= c;
}

int main() 
{
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++) 
    {
    	int num;
        scanf("%d", &num);
        // 初始化差分数组,b[i] = a[i] - a[i - 1]也是可以的
        insert(i, i, num); 
    }

    while(m--) 
    {
        int l, r, c;
        scanf("%d%d%d", &l, &r, &c);
        insert(l, r, c); // 执行区间更新
    }

    // 计算前缀和还原结果
    for(int i = 1; i <= n; i++) 
        printf("%d ", b[i] += b[i - 1]);
	
    return 0;
}

算法优势分析

  1. 时间复杂度优化:将 O ( m n ) O(mn) O(mn) 的暴力更新降为 O ( n + m ) O(n+m) O(n+m)
  2. 空间效率:仅需额外 O ( n ) O(n) O(n) 空间存储差分数组
  3. 通用性:适用于静态数组多次区间修改的场景

注意事项

  • 数组下标通常从1开始以避免边界处理
  • 差分数组初始化需通过 n n n 次单点操作完成
  • 最终结果需通过严格的前缀和计算获得

差分矩阵

在算法竞赛和数据处理中,经常会遇到需要对矩阵的子矩阵进行批量增减操作的情况。如果直接遍历子矩阵的每个元素进行修改,时间复杂度会很高 O ( q n m ) O(qnm) O(qnm)。差分矩阵技术能将时间复杂度优化到 O ( n m + q ) O(nm + q) O(nm+q),显著提升效率。

题目

输入一个 nm列的整数矩阵,再输入 q个操作,每个操作包含五个整数 x1 ,y1 ,x2 ,y2 ,c,其中 (x1,y1)(x2,y2)表示一个子矩阵的左上角坐标和右下角坐标。每个操作都要将选中的子矩阵中的每个元素的值加上 c。请你将进行完所有操作后的矩阵输出。
如果每次都遍历[x1, y1][x2, y2],复杂度过高。我们可以构造a的差分数组b,使得a数组是b数组的前缀和。

差分矩阵的核心思想

差分矩阵基于前缀和与差分的概念。对于原矩阵a,构造其差分矩阵b,使得a[i][j]等于b矩阵从(1,1)(i,j)的前缀和。通过维护差分矩阵b,可以高效实现区域增减操作。

对子矩阵(x1,y1)-(x2,y2)增加c的操作,转化为对差分矩阵b的四个关键位置修改:

  • b[x1][y1] += c
  • b[x2+1][y1] -= c
  • b[x1][y2+1] -= c
  • b[x2+1][y2+1] += c

这种四角修改法确保只有目标子矩阵内的元素会正确增加c值。
示意图

  • b数组如图,我们给b[x1, y1] + cb[x1, y2 + 1] - cb[x2 + 1, y1] - cb[x2 + 1, y2 + 1] + c。由于a[i]是前缀和,b[x1, y1] + c后,蓝色边框区域在求前缀和时都会加c,但是我们要求黑色区域的每个数加上 c,所以b[x1, y2 + 1] - cb[x2 + 1, y1] - c后,两块红色边框区域都减了c,绿色区域被减了一次,但是红色区域被减了两次,b[x2 + 1, y2 + 1] + c后,加减抵消。
  • 我们要构造b数组,假设a数组初始化为0,我们在读入a数组时可以理解为在(i,j)(i,j)这个区域加上a[i,j],这样就能得到数组b。最后要输出数组a,只用求一遍前缀和就行。

实现步骤

初始化差分矩阵时,可以将每个元素的初始值视为在单点(i,j)(i,j)的子矩阵上增加a[i][j]的操作:

void insert(int x1, int y1, int x2, int y2, int c) {
    b[x1][y1] += c;
    b[x2+1][y1] -= c;
    b[x1][y2+1] -= c; 
    b[x2+1][y2+1] += c;
}

// 初始化差分矩阵
for(int i = 1; i <= n; i++) {
    for(int j = 1; j <= m; j++) {
        insert(i, j, i, j, a[i][j]);
    }
}

处理完所有操作后,通过二维前缀和计算恢复最终矩阵:

for(int i = 1; i <= n; i++) {
    for(int j = 1; j <= m; j++) {
        a[i][j] = a[i-1][j] + a[i][j-1] - a[i-1][j-1] + b[i][j];
    }
}

二维前缀和大家可以去看看我的这篇文章 -> 任意门

复杂度分析

构造初始差分矩阵: O ( n m ) O(nm) O(nm)
处理q次操作: O ( q ) O(q) O(q)
计算最终矩阵: O ( n m ) O(nm) O(nm)
总时间复杂度: O ( n m + q ) O(nm + q) O(nm+q)

相比直接暴力修改的 O ( q n m ) O(qnm) O(qnm)时间复杂度,差分矩阵在q较大时有显著优势。

应用场景

这种技术适用于:

  • 大规模矩阵区域修改
  • 离线处理批量更新
  • 需要多次查询最终结果的场景

特别在图像处理、数值模拟、游戏开发等领域有广泛应用。

代码实现示例

完整实现参考以下代码框架:

#include <iostream>
using namespace std;

const int N = 1010;
int n, m, q;
int a[N][N], b[N][N];

void insert(int x1, int y1, int x2, int y2, int c) {
    b[x1][y1] += c;
    b[x2+1][y1] -= c;
    b[x1][y2+1] -= c;
    b[x2+1][y2+1] += c;
}

int main() {
    scanf("%d%d%d", &n, &m, &q);
    
    // 初始化差分矩阵
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
            scanf("%d", &a[i][j]), insert(i,j,i,j,a[i][j]);
    
    // 处理操作
    while(q--) {
        int x1,y1,x2,y2,c;
        cin >> x1 >> y1 >> x2 >> y2 >> c;
        insert(x1,y1,x2,y2,c);
    }
    
    // 计算最终矩阵
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= m; j++) {
        	//一边计算,一边打印
            a[i][j] = a[i-1][j] + a[i][j-1] - a[i-1][j-1] + b[i][j];
            printf("%d ", a[i][j]);
        }
        printf("\n");
    }
    
    return 0;
}

扩展思考

差分矩阵思想可以推广到更高维度,如三维空间的立方体区域修改。核心仍是正确设置差分边界点的增减操作,使修改只影响目标区域。
掌握差分技巧不仅能提升算法效率,也能培养对数据结构的深刻理解。在实际应用中,结合具体问题灵活运用差分思想,往往能创造出更优的解决方案。


算法内容来自AcWing算法基础课,感谢AcWing老师的详细讲解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值