Java版本地WordCount
package cn.spark.core._01_core_basic;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
/**
* 统计一个文件中每个单词出现的次数,wordCount经典案例
*/
public class _01_WordCountLocal {
public static void main(String[] args) {
//编写Spark应用程序
//本地执行,是可以在main方法中执行的
//第一步:创建SparkConf对象,设置Spark应用的配置信息
//使用setMaster()可以设置spark应用程序要连接的spark集群的master的url;但是如果设置为local,则代表在本地运行
SparkConf conf = new SparkConf()
.setAppName("WordCountLocal")
.setMaster("local");
//第二步:创建javaSparkContext对象
//在Spark中,SparkContext是spark所有功能的一个入口,无论是java,scala,Python编写,都必须要有一个SparkContext,它主要作用
//包括初始化Spark应用程序所需要的一些核心组件,包括调度器(DAGSchedule,TaskSchedule),还会去到Spark Master节点上进行注册
//等等,一句话:SparkContext是spark应用中,可是说是最最重要的一个对象
//但是呢,在spark中,编写不同类型的spark应用程序,使用sparkContext是不同的,比如说使用scala,使用的就是原生的SparkContext对象
//但是如果使用java,即使使用JavaSparkContext对象
//如果是开发Spark SQL程序,那么就是SQLContext\HiveContext
//如果是开发Spark Streaming 程序,那么它就是独有的SparkContext
//依次类推
JavaSparkContext sc = new JavaSparkContext(conf);
//第三步:要针对输入源(hdfs文件,本地文件,等等),创建一个初始的RDD
//输入源的数据会的打散,分配到RDD的每个partition中,从而形成一个初始的分布式的数据集
//我们这里呢,因为是本地测试,所以呢,就是针对本地文件
//SparkContext中,用于根据文件类型的输入源创建RDD的方法,叫做textFile()方法
//在java中,创建的普通RDD,都叫做javaRDD
//在这里呢,RDD中,有元素这种概念,如果是hdfs或者是本地文件呢,创建的RDD,每一个元素就相当于文件里一行
JavaRDD<String> lines = sc.textFile("D:/testcore.txt");
//第四步:对初始RDD进行transformation操作,也就是一些计算操作
//通常操作会通过创建function,并配合RDD的map,flatMap等算子来执行
//function,通常如果比较简单,则创建指定的function的匿名内部类
//但是如果function比较复杂,则会单独创建一个类,作为实现这个Function接口的类
//先将每一行拆分成单个的单词
//FlatMapFunction,有两个泛型的参数,分别是代表了输入和输出类型
//我们这里呢,输入肯定是String,因为是一行一行的文本,输出,其实也是String,因为是每一行的文本
//这里先简要介绍flatMap算子的作用,其实就是,将RDD的一个元素,给拆分成一个或者多个的元素
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterator<String> call(String line) throws Exception {
List<String> strings = Arrays.asList(line.split("\\s+"));
return strings.iterator();
}
});
//接着,需要将每一个单词映射为(单词,1)的这种格式
//因为只有这样,后面才能根于单词作为key,来进行每个单词的出现次数的累加
//mapToPair,其实就是将每个元素,映射为(v1,v2)这样的Tuple2类型的元素
//这里的tuple2就是scala类型,包含了两个值
//mapToPair这个算子,要求的是与PairFunction配合使用,第一个泛型参数代表了输入类型,第二个和第三个泛型参数,代表的是输出的tuple2的第一个
//和第二个值的类型
//JavaPairRDD的两个泛型类型,分别代表了tuple元素的第一个值和第二个值的类型
JavaPairRDD<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word,1);
}
});
//接着,需要以单词作为key,统计每个单词出现的次数
//这里需要使用reduceByKey这个算子,对每个key对应的value,都进行reduce操作
//比如在JavaPairRDD中几个元素,分别为(hello,1)(hello,1)(hello,1)(world,1)
//reduce操作相当于是把第一个值和第二个值进行计算,然后再将结果与第三个值进行计算
//比如这里的hello,就是相当于:首先是1+1=2,然后再2+1=3
//最后返回的JavaPairRDD中的元素,也是tuple,但是第一个值就是每个key,第二个值就是key的value
//reduce之后的结果,相当于就是每个单词出现的次数
JavaPairRDD<String, Integer> wordCounts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
}
});
//到这为止,我们通过几个Spark算子的操作,已经计算除了单词的次数
//但是,之前的我们使用的flatMap,mapToPair,reduceByKey这种操作,都叫做transformation操作
//一个spark应用中,光是有transformation操作是不行的,是不会执行的,必须要有一种叫做action的操作
//接着,最后,可以使用一种叫做action的操作,比如说:foreach,来触发程序的执行
wordCounts.foreach(new VoidFunction<Tuple2<String, Integer>>() {
@Override
public void call(Tuple2<String, Integer> wordcount) throws Exception {
System.out.println(wordcount._1+" : "+wordcount._2+" times");
}
});
sc.close();
}
}
Java使用Lambda表达式
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;
import java.util.Arrays;
public class JavaLambdaWordCount {
public static void main(String[] args){
if(args.length!=2){
System.out.println("Usage JavaLambdaWordCount<input><output>");
System.exit(1);
}
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName(JavaLambdaWordCount.class.getSimpleName());
JavaSparkContext jsc = new JavaSparkContext(conf);
// 读取数据
JavaRDD<String> jrdd = jsc.textFile(args[0]);
// 切割压平
JavaRDD<String> jrdd2 = jrdd.flatMap(t -> Arrays.asList(t.split(" ")).iterator());
// 和 1组合
JavaPairRDD<String, Integer> jprdd = jrdd2.mapToPair(t -> new Tuple2<String, Integer>(t, 1));
// 分组聚合
JavaPairRDD<String, Integer> res = jprdd.reduceByKey((a, b) -> a + b);
// 保存
res.saveAsTextFile(args[1]);
// 释放资源
jsc.close();
}
}
Scala版本地WordCount
package cn.spark.core._01_core_basic
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object _01_WordCountLocalOfScala {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf()
.setAppName("_01_WordCountLocal")
.setMaster("local")
//这个和java有区别 不要混淆了
val sc = new SparkContext(conf)
val lines: RDD[String] = sc.textFile("F:/testdate/01wc.txt")
val words: RDD[String] = lines.flatMap(line => line.split("\\s+"))
val pairs: RDD[(String, Int)] = words.map(word => (word,1))
val wordcount: RDD[(String, Int)] = pairs.reduceByKey(_ + _)
wordcount.foreach(wordcount => println(wordcount._1 + " : " + wordcount._2 + " times"))
}
}