Spark性能调优之代码方面的优化
1.避免创建重复的RDD
对性能没有问题,但会造成代码混乱
2.尽可能复用同一个RDD,减少产生RDD的个数
3.对多次使用的RDD进行持久化(cache,persist,checkpoint)
如何选择一种最合适的持久化策略?
默认MEMORY_ONLY, 性能很高, 而且不需要复制一份数据的副本,远程传送到其他节点上(BlockManager中的BlockTransferService),但是这里必须要注意的是,在实际的生产环境中,恐怕能够直接用这种
策略的场景还是有限的,如果RDD中数据比较多时(比如几十亿),直接用这种持久化
级别,会导致JVM的OOM内存溢出异常。
如果使用
MEMORY_ONLY级别时发生了内存溢出,建议尝试使用MEMORY_ONLY_SER级别,该级别会将RDD数据序列化后再保存在内存中,此时每个
partition仅仅是一个字节数组而已,大大减少了对象数量,并降低了内存占用。这种级别
比MEMORY_ONLY多出来的性能开销,主要就是序列化与反序列化的开销。
如果纯内存的级别都无法使用,那么建议使用MEMORY_AND_DISK_SER策略,而不是
MEMORY_AND_DISK策略。因为既然到了这一步,就说明RDD的数据量很大,内存无
法完全放下。序列化后的数据比较少,可以节省内存和磁盘的空间开销。同时该策略会优
先尽量尝试将数据缓存在内存中,内存缓存不下才会写入磁盘。
通常不建议使用DISK_ONLY和后缀为_2的级别:
因为完全基于磁盘文件进行数据的读写
,会导致性能急剧降低,有时还不如重新计算一次所有RDD。后缀为_2的级别,必须将
所有数据都复制一份副本,并发送到其他节点上,数据复制以及网络传输会导致较大的性
能开销,除非是要求作业的高可用性,否则不建议使用。
checkpoint 可以使数据安全,切断依赖关系(如果某一个rdd丢失了,重新计算的链太长?)
4.尽量避免使用shuffle类的算子
广播变量模拟join(一个RDD比较小,另一个RDD比较大
)
5.使用map-side预聚合shuffle操作
reduceByKey aggregateByKey
6.使用高性能的算子
有哪些高性能的算子?
reduceByKey/aggregateByKey 替代 groupByKey
mapPartitions 替代普通map Transformation算子
foreachPartitions 替代 foreach Action算子
repartitionAndSortWithinPartitions 替代repartition与sort类操
作
rdd.partitionBy() //其实自定义一个分区器
repartition
coalesce(numPartitions,true) 增多分区使用这个
coalesce(numPartitions,false) 减少分区 没有shuffle只是合并
partition
7.广播变量
开发过程中,会遇到需要在算子函数中使用外部变量的场景(尤其是大变量,比如
100M以上的大集合),那么此时就应该使用Spark的广播(Broadcast)功能来提
升性能,如果使用的外部变量比较大,建议使用Spark的广播功能,对该变量进行广播。广播
后的变量,会保证每个Executor的内存中,只驻留一份变量副本,而Executor中的
task执行时共享该Executor中的那份变量副本。这样的话,可以
大大减少变量副本
的数量,从而减少网络传输的性能开销,并减少对Executor内存的占用开销,降低
GC的频率