概述内容
杨辉三角是公元1261年,我国宋代数学家杨辉在其著作《详解九章算法》中给出的一个用数字排列起来的三角形阵。由于杨辉在书中引用了贾宪著的《开方作法本源》和“增乘开方法”,因此这个三角形也称“贾宪三角”。在欧洲,这个三角形叫帕斯卡三角形,是帕斯卡在1654年研究出来的,比杨辉晚了近400年时间。
这个就是杨辉三角
实现
那么使用java怎么实现呢
首先是怎么存储问题 在我看到这个问题的第一反应就是用一个二维数组存> 储数据 考虑到存储空间 我们不必直接这样
// 定义数组长度
int len;
//初始化数组
int[][] arr = new int[len][len];
我们发现 每行都存不完 只有在最后一行 才会完全填满
考虑到存储空间 我们不必直接这样
所有我们完全可以这样去初始化数组
// 定义数组长度
int len;
//初始化数组
int[][] arr = new int[len][];
for (int i = 0; i < len; i++) {
arr[i] = new int[i + 1];
}
初始数组结束后 我们要解决的问题就是 如何把数据存到数组里面去
我们发现
- 每行第一个和最后一个都是一
- 其他的数都是上面的相加 例如: arr[2][3] = arr[1][3] + arr[1][4];
这样我们就可以向里面存储数据了
for (int i = 0; i < len; i++) {
for (int j = 0; j < arr[i].length; j++) {
//每行第一个和最后一个都是一
if (j == 0 || j == arr[i].length - 1) {
arr[i][j] = 1;
} else {
// 其他的数都是上面的相加 例如:arr[2][3]=arr[1][3]+arr[1][4];
arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j];
}
}
}
此时就可以输出出来
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < arr[i].length; j++) {
System.out.print(arr[i][j] + "\t");
}
System.out.println();
}
等腰输出
此时就要用到System.out.format(); 这个语句了 这个语句就是和C语言的 printf(); 的输出类似 我们可以把每一个位置分为三等份 其中数据站中间的位置 前面和后面的位置用空格输出
我们用上面的最后一行的数据举例 用"+"代表空格 因为上面的数据最大的是126 站三个位置 所以
(+++ 1++ +++) (+++ 9++ +++) (+++ 36+ +++) …
那么现在就是找出最大的数 最大的数在最后一行的
// 获取最大的数据
int num = arr[arr.length - 1][(arr.length) / 2];
判断他是几位数
//定义计数器 count 表示大小 也就是几位数
int count = 0;
while (num >= 1) {
num /= 10;
count++;
}
最后就是格式化输出
for (int i = 0; i < arr.length; i++) {
//每行前面的空格
System.out.format("%" + ((arr.length - i)*count) + "s", "");
for (int j = 0; j < arr[i].length; j++) {
//每个数据的 间隙
System.out.format("%-"+count+"d",arr[i][j]);
System.out.format("%-"+count+"s","");
}
//换行
System.out.println();
}
源代码
package WanBanXueXi.text.text02;
/***
* 杨辉三角
*
* 定义一个二维数组 来存储
*
*
*/
public class YanHui2 {
public static void main(String[] args) {
int len = 10;
int[][] arr = new int[len][];
for (int i = 0; i < len; i++) {
arr[i] = new int[i + 1];
}
for (int i = 0; i < len; i++) {
for (int j = 0; j < arr[i].length; j++) {
if (j == 0 || j == arr[i].length - 1) {
arr[i][j] = 1;
} else {
arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j];
}
}
}
int num = arr[arr.length - 1][(arr.length) / 2];
System.out.println("打印的行数: " + arr.length);
int count = 0;
while (num >= 1) {
num /= 10;
count++;
}
for (int i = 0; i < arr.length; i++) {
System.out.format("%" + ((arr.length - i)*count) + "s", "");
for (int j = 0; j < arr[i].length; j++) {
System.out.format("%-"+count+"d",arr[i][j]);
System.out.format("%-"+count+"s","");
}
System.out.println();
}
}
}
总结
其实杨辉三角最难的部分还是 格式化输出 只要掌握了format 语法 格式化输出不是梦!!!