1322:【例6.4】拦截导弹问题(Noip1999)

这是一道关于计算拦截导弹所需最少导弹拦截系统数量的问题。题目来自NOIP1999,要求根据导弹飞行的高度,确保每颗导弹都能被拦截,而拦截系统的特点是后续导弹高度不能超过前一颗。解决方案需要计算出一套系统无法拦截所有导弹的情况,即找到连续下降的部分并计算所需系统数量。
摘要由CSDN通过智能技术生成

1322:【例6.4】拦截导弹问题(Noip1999)


时间限制: 1000 ms         内存限制: 65536 KB
提交数: 18532     通过数: 7245

【题目描述】

某国为了防御敌国的导弹袭击,开发出一种导弹拦截系统,但是这种拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭,由于该系统还在试用阶段。所以一套系统有可能不能拦截所有的导弹。

输入导弹依次飞来的高度(雷达给出的高度不大于30000的正整数)。计算要拦截所有导弹最小需要配备多少套这种导弹拦截系统。

【输入】

n颗依次飞来的高度(1≤n≤1000)。

【输出】

要拦截所有导弹最小配备的系统数k。

【输入样例】

389 207 155 300 299 170 158 65
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值