上一话
1.MediaPipe
代码
import cv2
import time
import numpy as np
from tqdm import tqdm
import mediapipe as mp
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=True,
model_complexity=2,
smooth_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
drawing = mp.solutions.drawing_utils
def process_frame(img):
height, width, channels = img.shape
start = time.time()
results = pose.process(img)
if results.pose_landmarks:
drawing.draw_landmarks(img, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
coords = np.array(results.pose_landmarks.landmark)
for index, each in enumerate(coords):
cx = int(each.x * width)
cy = int(each.y * height)
cz = each.z
radius = 5
# nose
if index == 0:
img = cv2.circle(img, (cx, cy), radius, (0, 0, 255), -1)
# shoulder
elif index in [11, 12]:
img = cv2.circle(img, (cx, cy), radius, (193, 182, 255), -1)
# hip joint
elif index in [23, 24]:
img = cv2.circle(img, (cx, cy), radius, (16, 144, 247), -1)
# elbow
elif index in [13, 14]:
img = cv2.circle(img, (cx, cy), radius, (1, 240, 255), -1)
# lap
elif index in [25, 26]:
img = cv2.circle(img, (cx, cy), radius, (140, 47, 240), -1)
# wrist and ankle
elif index in [15, 16, 27, 28]:
img = cv2.circle(img, (cx, cy), radius, (223, 155, 60), -1)
# left hand
elif index in [17, 19, 21]:
img = cv2.circle(img, (cx, cy), radius, (16, 144, 247), -1)
# right hand
elif index in [18, 20, 22]:
img = cv2.circle(img, (cx, cy), radius, (1, 240, 255), -1)
# left feet
elif index in [27, 29, 31]:
img = cv2.circle(img, (cx, cy), radius, (140, 47, 240), -1)
# right feet
elif index in [28, 30, 32]:
img = cv2.circle(img, (cx, cy), radius, (223, 155, 6), -1)
# mouth
elif index in [9, 10]:
img = cv2.circle(img, (cx, cy), radius, (16, 144, 247), -1)
# face and eye
elif index in [1, 2, 3, 4, 5, 6, 7, 8]:
img = cv2.circle(img, (cx, cy), radius, (1, 240, 255), -1)
# other
else:
img = cv2.circle(img, (cx, cy), radius, (140, 47, 240), -1)
else:
fail = "fail detection"
img = cv2.putText(img, fail, (25, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
FPS = 1 / (time.time() - start)
img = cv2.putText(img, "FPS" + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
return img
def out_video(input):
file = input.split("/")[-1]
output = "out-optim-" + file
print("It will start processing video: {}".format(input))
cap = cv2.VideoCapture(input)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# create VideoWriter,VideoWriter_fourcc is video decode
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = cap.get(cv2.CAP_PROP_FPS)
out = cv2.VideoWriter(output, fourcc, fps, (int(frame_size[0]), int(frame_size[1])))
# the progress bar
with tqdm(range(frame_count)) as pbar:
while cap.isOpened():
success, frame = cap.read()
if not success:
break
try:
frame = process_frame(frame)
out.write(frame)
pbar.update(1)
except:
print("ERROR")
pass
pbar.close()
cv2.destroyAllWindows()
out.release()
cap.release()
print("{} finished!".format(output))
if __name__ == '__main__':
video_dirs = "1.mp4"
out_video(video_dirs)
运行结果
MediaPipe人体姿态估计效果展示
2.OpenPose
使用ffmpeg写入(Pytorch深度学习框架只使用OpenPose的models)代码
demo_video.py
import copy
import math
import time
import numpy as np
import cv2
from glob import glob
import os
import argparse
import json
# video file processing setup
# from: https://stackoverflow.com/a/61927951
import argparse
import subprocess
import sys
from pathlib import Path
from typing import NamedTuple
class FFProbeResult(NamedTuple):
return_code: int
json: str
error: str
def ffprobe(file_path) -> FFProbeResult:
command_array = ["ffprobe",
"-v", "quiet",
"-print_format", "json",
"-show_format",
"-show_streams",
file_path]
result = subprocess.run(command_array, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
return FFProbeResult(return_code=result.returncode,
json=result.stdout,
error=result.stderr)
# openpose setup
from src import model
from src import util
from src.body import Body
from src.hand import Hand
body_estimation = Body('model/body_pose_model.pth')
hand_estimation = Hand('model/hand_pose_model.pth')
def process_frame(frame, body=True, hands=True):
start = time.time()
canvas = copy.deepcopy(frame)
if body:
candidate, subset = body_estimation(frame)
canvas = util.draw_bodypose(canvas, candidate, subset)
if hands:
hands_list = util.handDetect(candidate, subset, frame)
all_hand_peaks = []
for x, y, w, is_left in hands_list:
peaks = hand_estimation(frame[y:y + w, x:x + w, :])
peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x)
peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y)
all_hand_peaks.append(peaks)
canvas = util.draw_handpose(canvas, all_hand_peaks)
FPS = math.ceil(1 / (time.time() - start))
canvas = cv2.putText(canvas, "FPS" + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
return canvas
# writing video with ffmpeg because cv2 writer failed
# https://stackoverflow.com/questions/61036822/opencv-videowriter-produces-cant-find-starting-number-error
import ffmpeg
# open specified video
parser = argparse.ArgumentParser(
description="Process a video annotating poses detected.")
parser.add_argument('--file', type=str, default='video/1.avi', help='Video file location to process.')
parser.add_argument('--no_hands', action='store_true', help='No hand pose')
parser.add_argument('--no_body', action='store_true', help='No body pose')
args = parser.parse_args()
video_file = args.file
cap = cv2.VideoCapture(video_file)
# get video file info
ffprobe_result = ffprobe(args.file)
info = json.loads(ffprobe_result.json)
videoinfo = [i for i in info["streams"] if i["codec_type"] == "video"][0]
input_fps = videoinfo["avg_frame_rate"]
# input_fps = float(input_fps[0])/float(input_fps[1])
input_pix_fmt = videoinfo["pix_fmt"]
input_vcodec = videoinfo["codec_name"]
# define a writer object to write to a movidified file
postfix = info["format"]["format_name"].split(",")[0]
output_file = ".".join(video_file.split(".")[:-1]) + ".processed." + postfix
class Writer():
def __init__(self, output_file, input_fps, input_framesize, input_pix_fmt,
input_vcodec):
if os.path.exists(output_file):
os.remove(output_file)
self.ff_proc = (
ffmpeg
.input('pipe:',
format='rawvideo',
pix_fmt="bgr24",
s='%sx%s' % (input_framesize[1], input_framesize[0]),
r=input_fps)
.output(output_file, pix_fmt=input_pix_fmt, vcodec=input_vcodec)
.overwrite_output()
.run_async(pipe_stdin=True)
)
def __call__(self, frame):
self.ff_proc.stdin.write(frame.tobytes())
def close(self):
self.ff_proc.stdin.close()
self.ff_proc.wait()
writer = None
iteration = 0
while (cap.isOpened()):
ret, frame = cap.read()
if frame is None:
break
posed_frame = process_frame(frame, body=not args.no_body,
hands=not args.no_hands)
if writer is None:
input_framesize = posed_frame.shape[:2]
writer = Writer(output_file, input_fps, input_framesize, input_pix_fmt,
input_vcodec)
# cv2.imshow('frame', posed_frame)
# write the frame
writer(posed_frame)
iteration += 1
print("iteration: {}".format(iteration))
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
writer.close()
cv2.destroyAllWindows()
src/util.py
import numpy as np
import math
import cv2
import matplotlib
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import numpy as np
import matplotlib.pyplot as plt
import cv2
def padRightDownCorner(img, stride, padValue):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
# transfer caffe model to pytorch which will match the layer name
def transfer(model, model_weights):
transfered_model_weights = {}
for weights_name in model.state_dict().keys():
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
return transfered_model_weights
# draw the body keypoint and lims
def draw_bodypose(canvas, candidate, subset):
stickwidth = 4
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
for i in range(18):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2]
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
if -1 in index:
continue
cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
# plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
# plt.imshow(canvas[:, :, [2, 1, 0]])
return canvas
def draw_handpose(canvas, all_hand_peaks, show_number=False):
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
fig = Figure(figsize=plt.figaspect(canvas))
fig.subplots_adjust(0, 0, 1, 1)
fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
bg = FigureCanvas(fig)
ax = fig.subplots()
ax.axis('off')
ax.imshow(canvas)
width, height = ax.figure.get_size_inches() * ax.figure.get_dpi()
for peaks in all_hand_peaks:
for ie, e in enumerate(edges):
if np.sum(np.all(peaks[e], axis=1)==0)==0:
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
ax.plot([x1, x2], [y1, y2], color=matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0]))
for i, keyponit in enumerate(peaks):
x, y = keyponit
ax.plot(x, y, 'r.')
if show_number:
ax.text(x, y, str(i))
bg.draw()
canvas = np.fromstring(bg.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
return canvas
# image drawed by opencv is not good.
def draw_handpose_by_opencv(canvas, peaks, show_number=False):
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
# cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
# cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
for ie, e in enumerate(edges):
if np.sum(np.all(peaks[e], axis=1)==0)==0:
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
for i, keyponit in enumerate(peaks):
x, y = keyponit
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
if show_number:
cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
return canvas
# detect hand according to body pose keypoints
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
def handDetect(candidate, subset, oriImg):
# right hand: wrist 4, elbow 3, shoulder 2
# left hand: wrist 7, elbow 6, shoulder 5
ratioWristElbow = 0.33
detect_result = []
image_height, image_width = oriImg.shape[0:2]
for person in subset.astype(int):
# if any of three not detected
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
if not (has_left or has_right):
continue
hands = []
#left hand
if has_left:
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
x1, y1 = candidate[left_shoulder_index][:2]
x2, y2 = candidate[left_elbow_index][:2]
x3, y3 = candidate[left_wrist_index][:2]
hands.append([x1, y1, x2, y2, x3, y3, True])
# right hand
if has_right:
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
x1, y1 = candidate[right_shoulder_index][:2]
x2, y2 = candidate[right_elbow_index][:2]
x3, y3 = candidate[right_wrist_index][:2]
hands.append([x1, y1, x2, y2, x3, y3, False])
for x1, y1, x2, y2, x3, y3, is_left in hands:
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
x = x3 + ratioWristElbow * (x3 - x2)
y = y3 + ratioWristElbow * (y3 - y2)
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
# x-y refers to the center --> offset to topLeft point
# handRectangle.x -= handRectangle.width / 2.f;
# handRectangle.y -= handRectangle.height / 2.f;
x -= width / 2
y -= width / 2 # width = height
# overflow the image
if x < 0: x = 0
if y < 0: y = 0
width1 = width
width2 = width
if x + width > image_width: width1 = image_width - x
if y + width > image_height: width2 = image_height - y
width = min(width1, width2)
# the max hand box value is 20 pixels
if width >= 20:
detect_result.append([int(x), int(y), int(width), is_left])
'''
return value: [[x, y, w, True if left hand else False]].
width=height since the network require squared input.
x, y is the coordinate of top left
'''
return detect_result
# get max index of 2d array
def npmax(array):
arrayindex = array.argmax(1)
arrayvalue = array.max(1)
i = arrayvalue.argmax()
j = arrayindex[i]
return i, j
src/hand.py
import cv2
import json
import numpy as np
import math
import time
from scipy.ndimage.filters import gaussian_filter
import matplotlib.pyplot as plt
import matplotlib
import torch
from skimage.measure import label
from src.model import handpose_model
from src import util
class Hand(object):
def __init__(self, model_path):
self.model = handpose_model()
if torch.cuda.is_available():
self.model = self.model.cuda()
model_dict = util.transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def __call__(self, oriImg):
scale_search = [0.5, 1.0, 1.5, 2.0]
# scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre = 0.05
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
# paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
if torch.cuda.is_available():
data = data.cuda()
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
with torch.no_grad():
output = self.model(data).cpu().numpy()
# output = self.model(data).numpy()q
# extract outputs, resize, and remove padding
heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
heatmap_avg += heatmap / len(multiplier)
all_peaks = []
for part in range(21):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
# 全部小于阈值
if np.sum(binary) == 0:
all_peaks.append([0, 0])
continue
label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim)
max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1
label_img[label_img != max_index] = 0
map_ori[label_img == 0] = 0
y, x = util.npmax(map_ori)
all_peaks.append([x, y])
return np.array(all_peaks)
if __name__ == "__main__":
hand_estimation = Hand('../model/hand_pose_model.pth')
# test_image = '../images/hand.jpg'
test_image = '../images/hand.jpg'
oriImg = cv2.imread(test_image) # B,G,R order
peaks = hand_estimation(oriImg)
canvas = util.draw_handpose(oriImg, peaks, True)
cv2.imshow('', canvas)
cv2.waitKey(0)
src/body.py
import cv2
import numpy as np
import math
import time
from scipy.ndimage.filters import gaussian_filter
import matplotlib.pyplot as plt
import matplotlib
import torch
from torchvision import transforms
from src import util
from src.model import bodypose_model
class Body(object):
def __init__(self, model_path):
self.model = bodypose_model()
if torch.cuda.is_available():
self.model = self.model.cuda()
model_dict = util.transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def __call__(self, oriImg):
# scale_search = [0.5, 1.0, 1.5, 2.0]
scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre1 = 0.1
thre2 = 0.05
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
if torch.cuda.is_available():
data = data.cuda()
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
with torch.no_grad():
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
# extract outputs, resize, and remove padding
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
paf_avg += + paf / len(multiplier)
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(one_heatmap.shape)
map_left[1:, :] = one_heatmap[:-1, :]
map_right = np.zeros(one_heatmap.shape)
map_right[:-1, :] = one_heatmap[1:, :]
map_up = np.zeros(one_heatmap.shape)
map_up[:, 1:] = one_heatmap[:, :-1]
map_down = np.zeros(one_heatmap.shape)
map_down[:, :-1] = one_heatmap[:, 1:]
peaks_binary = np.logical_and.reduce(
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
peak_id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]
# the middle joints heatmap correpondence
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
[55, 56], [37, 38], [45, 46]]
connection_all = []
special_k = []
mid_num = 10
for k in range(len(mapIdx)):
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
candA = all_peaks[limbSeq[k][0] - 1]
candB = all_peaks[limbSeq[k][1] - 1]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if (nA != 0 and nB != 0):
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
norm = max(0.001, norm)
vec = np.divide(vec, norm)
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
for I in range(len(startend))])
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
for I in range(len(startend))])
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
0.5 * oriImg.shape[0] / norm - 1, 0)
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append(
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if (i not in connection[:, 3] and j not in connection[:, 4]):
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
if (len(connection) >= min(nA, nB)):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist])
for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limbSeq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if subset[j][indexB] != partBs[i]:
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
# candidate: x, y, score, id
return candidate, subset
if __name__ == "__main__":
body_estimation = Body('../model/body_pose_model.pth')
test_image = '../images/ski.jpg'
oriImg = cv2.imread(test_image) # B,G,R order
candidate, subset = body_estimation(oriImg)
canvas = util.draw_bodypose(oriImg, candidate, subset)
plt.imshow(canvas[:, :, [2, 1, 0]])
plt.show()
运行结果
OpenPose效果展示
使用cv2写入代码
需要安装OpenPose,请看我的另一篇博客:
import os
import time
import cv2
import sys
from tqdm import tqdm
from sys import platform
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
if platform == 'win32':
lib_dir = 'Release'
bin_dir = 'bin'
x64_dir = 'x64'
lib_path = os.path.join(BASE_DIR, lib_dir)
bin_path = os.path.join(BASE_DIR, bin_dir)
x64_path = os.path.join(BASE_DIR, x64_dir)
sys.path.append(lib_path)
os.environ['PATH'] += ';' + bin_path + ';' + x64_path + '\Release;'
try:
import pyopenpose as op
print("successful, import pyopenpose!")
except ImportError as e:
print("fail to import pyopenpose!")
raise e
else:
print(f"当前电脑环境:\n{platform}\n")
sys.exit(-1)
def out_video(input):
datum = op.Datum()
opWrapper = op.WrapperPython()
params = dict()
params["model_folder"] = BASE_DIR + "\models"
params["model_pose"] = "BODY_25"
params["number_people_max"] = 3
params["disable_blending"] = False
opWrapper.configure(params)
opWrapper.start()
file = input.split("/")[-1]
output = "video/out-optim-" + file
print("It will start processing video: {}".format(input))
cap = cv2.VideoCapture(input)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
# create VideoWriter,VideoWriter_fourcc is video decode
fourcc = cv2.VideoWriter_fourcc('D', 'I', 'V', 'X')
fps = cap.get(cv2.CAP_PROP_FPS)
out = cv2.VideoWriter(output, fourcc, fps, frame_size)
# the progress bar
with tqdm(range(frame_count)) as pbar:
while cap.isOpened():
start = time.time()
success, frame = cap.read()
if success:
datum.cvInputData = frame
opWrapper.emplaceAndPop(op.VectorDatum([datum]))
opframe = datum.cvOutputData
FPS = 1 / (time.time() - start)
opframe = cv2.putText(opframe, "FPS" + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0, 255, 0), 3)
out.write(opframe)
pbar.update(1)
else:
break
pbar.close()
cv2.destroyAllWindows()
out.release()
cap.release()
print("{} finished!".format(output))
if __name__ == "__main__":
video_dir = "video/2.avi"
out_video(video_dir)
运行结果
OpenPose运行结果
评论
其实:
1.MediaPipe比较成熟,并且不需要下载或者配置一些乱七八糟的东西,而OpenPose就得配置一大堆乱七八糟的东西,很乱,除非是把caffe的模型转化成pytorch的模型,本人更熟悉pytorch。
2.MediaPipe推理速度比OpenPose快,快了不止一点点!
3.OpenPose的效果比MediaPipe的效果更好,并且有多人在画框时OpenPose能检测到所有人,而MediaPipe在大多数的时候却只能检测到一个。
下一话