题目
珂珂喜欢吃香蕉。这里有 n
堆香蕉,第 i
堆中有 piles[i]
根香蕉。警卫已经离开了,将在 h
小时后回来。
珂珂可以决定她吃香蕉的速度 k
(单位:根/小时)。每个小时,她将会选择一堆香蕉,从中吃掉 k
根。如果这堆香蕉少于 k
根,她将吃掉这堆的所有香蕉,然后这一小时内不会再吃更多的香蕉。
珂珂喜欢慢慢吃,但仍然想在警卫回来前吃掉所有的香蕉。
返回她可以在 h
小时内吃掉所有香蕉的最小速度 k
(k
为整数)。
示例 1:
输入:piles = [3,6,7,11], h = 8 输出:4
示例 2:
输入:piles = [30,11,23,4,20], h = 5 输出:30
示例 3:
输入:piles = [30,11,23,4,20], h = 6 输出:23
提示:
1 <= piles.length <= 104
piles.length <= h <= 109
1 <= piles[i] <= 109
思路
- 个人感觉这题的难点主要在于边界条件的判断,先讲讲思路:
- 首先要确定一个最小的速度,那么我们可选的速度范围就是[1, max(piles)],那么首先需要通过遍历数组找到最大的那个香蕉数,再去做二分查找。
- 确定完上下界后,就需要不断地二分,每次二分都遍历一遍数组检查二分中点是否能够满足吃完的条件,若满足,则将上界更新到中点,若不满足,说明下界需要从中点往后移动一步,最后不断搜索知道上下界交汇即可。
代码实现
class Solution {
public:
int minEatingSpeed(vector<int>& piles, int h) {
int min = 1, max = piles[0], n = piles.size(), middle, time;
for(int i = 0; i < n; i++) {
if(piles[i] > max) max = piles[i];
}
while(min < max) {
time = h;
middle = min + (max-min)/2;
for(int i = 0; i < n; i++) {
time -= piles[i] / middle;
if(piles[i] % middle != 0) time--;
if(time < 0) break;
}
if(time < 0) min = middle + 1;
else max = middle;
}
return min;
}
};
复杂度分析
- 时间复杂度:找最大值的时间复杂度是O(n)的,然后二分查找的过程是近似为O(n*log(max(piles)))的。
- 空间复杂度:O(1)。