每日一道leetcode

875. 爱吃香蕉的珂珂 - 力扣(LeetCode)

题目

珂珂喜欢吃香蕉。这里有 n 堆香蕉,第 i 堆中有 piles[i] 根香蕉。警卫已经离开了,将在 h 小时后回来。

珂珂可以决定她吃香蕉的速度 k (单位:根/小时)。每个小时,她将会选择一堆香蕉,从中吃掉 k 根。如果这堆香蕉少于 k 根,她将吃掉这堆的所有香蕉,然后这一小时内不会再吃更多的香蕉。  

珂珂喜欢慢慢吃,但仍然想在警卫回来前吃掉所有的香蕉。

返回她可以在 h 小时内吃掉所有香蕉的最小速度 kk 为整数)。

    示例 1:

    输入:piles = [3,6,7,11], h = 8
    输出:4
    

    示例 2:

    输入:piles = [30,11,23,4,20], h = 5
    输出:30
    

    示例 3:

    输入:piles = [30,11,23,4,20], h = 6
    输出:23
    

    提示:

    • 1 <= piles.length <= 104
    • piles.length <= h <= 109
    • 1 <= piles[i] <= 109

    思路

    1. 个人感觉这题的难点主要在于边界条件的判断,先讲讲思路:
      1. 首先要确定一个最小的速度,那么我们可选的速度范围就是[1, max(piles)],那么首先需要通过遍历数组找到最大的那个香蕉数,再去做二分查找。
      2. 确定完上下界后,就需要不断地二分,每次二分都遍历一遍数组检查二分中点是否能够满足吃完的条件,若满足,则将上界更新到中点,若不满足,说明下界需要从中点往后移动一步,最后不断搜索知道上下界交汇即可。

    代码实现

    class Solution {
    public:
        int minEatingSpeed(vector<int>& piles, int h) {
            int min = 1, max = piles[0], n = piles.size(), middle, time;
            for(int i = 0; i < n; i++) {
                if(piles[i] > max) max = piles[i];
            }
            while(min < max) {
                time = h;
                middle = min + (max-min)/2;
                for(int i = 0; i < n; i++) {
                    time -= piles[i] / middle;
                    if(piles[i] % middle != 0) time--;
                    if(time < 0) break;
                }
                if(time < 0) min = middle + 1;
                else max = middle;
            }
            return min;
        }
    };

    复杂度分析

    • 时间复杂度:找最大值的时间复杂度是O(n)的,然后二分查找的过程是近似为O(n*log(max(piles)))的。
    • 空间复杂度:O(1)。

    官方题解

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值